CLC number: TU91
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-02-20
Cited: 0
Clicked: 4155
Yi-guo Xue, Ze-xu Ning, Dao-hong Qiu, Mao-xin Su, Zhi-qiang Li, Fan-meng Kong, Guang-kun Li, Peng Wang. A study of water curtain parameters of underground oil storage caverns using time series monitoring and numerical simulation[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2000130 @article{title="A study of water curtain parameters of underground oil storage caverns using time series monitoring and numerical simulation", %0 Journal Article TY - JOUR
基于时序监测和数值模拟的地下储油库水幕参数研究创新点:1. 通过现场渗压监测和气压监测,建立地下油库运营评价体系,及时了解运营状况;2. 通过有限元计算,对比不同水幕参数的优劣性,获得水幕参数的优化方案. 方法:1. 结合地质勘探资料,探讨水幕孔布孔方式的依据;2. 通过收集现场监测时间序列数据,采用时序分析法评价运营期间地下水封储油库的运营和水封效果,讨论可能出现的渗漏或过量涌水情况;3. 通过有限元仿真模拟,选择水幕系统的三个关键参数并进行优化,评价提出的水幕参数效益,提出适用于本项目的最优参数解. 结论:1. 黄岛地下水封石油洞库项目水幕系统最佳水幕孔间距为10 m,最合理的水幕孔与洞室高度差为25 m,最优水幕压力为70 kPa.2. 当水幕孔间距大于10 m时,水封效果提升不明显;考虑到经济成本(建设、运行和排水成本),这种改进是无效的.3. 当水幕孔与主洞的垂直距离为30~35 m时,水封失效;目前水幕系统的垂直影响范围约为25 m.4. 受地形因素的影响,主洞室周围的孔隙水压力存在显著差异;当水幕压力为60 kPa时,垂直水力梯度小于1. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Åberg B, 1978. Prevention of gas leakage from unlined reservoirs in rock. Proceedings of the 1st International Symposium on Storage in Excavated Rock Caverns, p.399-413. ![]() [2]Aliyu MM, Shang J, Murphy W, et al., 2019. Assessing the uniaxial compressive strength of extremely hard cryptocrystalline flint. International Journal of Rock Mechanics and Mining Sciences, 113:310-321. ![]() [3]Chen YM, Xu XB, Zhan LT, 2012. Analysis of solid-liquid-gas interactions in landfilled municipal solid waste by a bio-hydro-mechanical coupled model. Science China Technological Sciences, 55(1):81-89. ![]() [4]Cornet FH, 2016. Seismic and aseismic motions generated by fluid injections. Geomechanics for Energy and the Environment, 5:42-54. ![]() [5]Ehlers W, 2018. Effective stresses in multiphasic porous media: a thermodynamic investigation of a fully non-linear model with compressible and incompressible constituents. Geomechanics for Energy and the Environment, 15:35-46. ![]() [6]Hou GX, Shu SZ, 2016. A numerical approach to solve 3D geotechnical problems with 2D codes. Proceedings of the 4th Geo-China International Conference, p.160-166. ![]() [7]Kjørholt H, Broch E, 1992. The water curtain—a successful means of preventing gas leakage from high-pressure, unlined rock caverns. Tunnelling and Underground Space Technology, 7(2):127-132. ![]() [8]Kong F, Shang J, 2018. A validation study for the estimation of uniaxial compressive strength based on index tests. Rock Mechanics and Rock Engineering, 51(7):2289-2297. ![]() [9]Lee CI, Song JJ, 2003. Rock engineering in underground energy storage in Korea. Tunnelling and Underground Space Technology, 18(5):467-483. ![]() [10]Levinson G, Ajling G, Nord G, 2004. Design and construction of the Ningbo underground LPG storage project in China. Tunnelling and Underground Space Technology, 19(4-5):374-375. ![]() [11]Li SC, Ping Y, Wang ZC, et al., 2012. Assessments of containment and stability of underground crude oil storage caverns based on fluid-solid coupling theory for discrete medium. Chinese Journal of Rock Mechanics and Engineering, 31(11):2161-2170 (in Chinese). ![]() [12]Li SC, Wang ZC, Ping Y, et al., 2014. Discrete element analysis of hydro-mechanical behavior of a pilot underground crude oil storage facility in granite in China. Tunnelling and Underground Space Technology, 40:75-84. ![]() [13]Li Y, Chen YF, Zhang GJ, et al., 2017. A numerical procedure for modeling the seepage field of water-sealed underground oil and gas storage caverns. Tunnelling and Underground Space Technology, 66:56-63. ![]() [14]Li ZK, Wang KZ, Wang AM, et al., 2009. Experimental study of water curtain performance for gas storage in an underground cavern. Journal of Rock Mechanics and Geotechnical Engineering, 1(1):89-96. ![]() [15]Li ZQ, Xue YG, Qiu DH, et al., 2017. AHP-ideal point model for large underground petroleum storage site selection: an engineering application. Sustainability, 9(12):2343. ![]() [16]Li ZQ, Xue YG, Li SC, et al., 2019. An analytical model for surrounding rock classification during underground water-sealed caverns construction: a case study from eastern China. Environmental Earth Sciences, 78(20):602. ![]() [17]Li ZQ, Xue YG, Liang JY, et al., 2020. Performance assessment of the water curtain system: a monitoring system in an underground water-sealed oil reservoir in China. Bulletin of Engineering Geology and the Environment, 79(7):3635-3648. ![]() [18]Liu RC, Jiang YJ, Li B, et al., 2015. A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks. Computers and Geotechnics, 65:45-55. ![]() [19]Ma XD, Rudnicki JW, Haimson BC, 2017. Failure characteristics of two porous sandstones subjected to true triaxial stresses: applied through a novel loading path. Journal of Geophysical Research: Solid Earth, 122(4):2525-2540. ![]() [20]Ravandi EG, Rahmannejad R, Karimi-Nasab S, et al., 2018. Water curtain system pre-design for crude oil storage URCs: a numerical modeling and genetic programming approach. Geotechnical and Geological Engineering, 36(2):813-826. ![]() [21]Rouabhi A, Hévin G, Soubeyran A, et al., 2017. A multiphase multicomponent modeling approach of underground salt cavern storage. Geomechanics for Energy and the Environment, 12:21-35. ![]() [22]Shang J, Hencher SR, West LJ, 2016. Tensile strength of geological discontinuities including incipient bedding, rock joints and mineral veins. Rock Mechanics and Rock Engineering, 49(11):4213-4225. ![]() [23]Shang J, Hencher SR, West LJ, et al., 2017. Forensic excavation of rock masses: a technique to investigate discontinuity persistence. Rock Mechanics and Rock Engineering, 50(11):2911-2928. ![]() [24]Shang J, West LJ, Hencher SR, et al., 2018. Tensile strength of large-scale incipient rock joints: a laboratory investigation. Acta Geotechnica, 13(4):869-886. ![]() [25]Shi L, Zhang B, Wang L, et al., 2018. Functional efficiency assessment of the water curtain system in an underground water-sealed oil storage cavern based on time-series monitoring data. Engineering Geology, 239:79-95. ![]() [26]Tang ZC, Jiao YY, Wong LNY, et al., 2016. Choosing appropriate parameters for developing empirical shear strength criterion of rock joint: review and new insights. Rock Mechanics and Rock Engineering, 49(11):4479-4490. ![]() [27]Wang L, Jiao YY, Huang GH, et al., 2017. Improvement of contact calculation in spherical discontinuous deformation analysis. Science China Technological Sciences, 60(5):765-771. ![]() [28]Wang ZC, Li SC, Qiao LP, 2015. Design and test aspects of a water curtain system for underground oil storage caverns in China. Tunnelling and Underground Space Technology, 48:20-34. ![]() [29]Wang ZC, Li W, Qiao LP, et al., 2018. Hydraulic properties of fractured rock mass with correlated fracture length and aperture in both radial and unidirectional flow configurations. Computers and Geotechnics, 104:167-184. ![]() [30]Wu N, Zhang C, Maimaitiyusupu S, et al., 2019. Investigation on properties of rock joint in compression dynamic test. KSCE Journal of Civil Engineering, 23(9):3854-3863. ![]() [31]Wu ZJ, Ma LL, Fan LF, 2018. Investigation of the characteristics of rock fracture process zone using coupled FEM/DEM method. Engineering Fracture Mechanics, 200:355-374. ![]() [32]Xu ZH, Gao B, Li SC, et al., 2018. A groundwater seal evaluation method based on water inflow for underground oil storage caverns. Tunnelling and Underground Space Technology, 82:265-277. ![]() [33]Xue YG, Li SC, Qiu DH, et al., 2015. A new evaluation method for site selection of large underground water-sealed petroleum storage depots. Science China Technological Sciences, 58(6):967-978. ![]() [34]Yan L, Meng QX, Xu WY, et al., 2017. A numerical method for analyzing the permeability of heterogeneous geomaterials based on digital image processing. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(2):124-137. ![]() [35]Yang TH, Jia P, Shi WH, et al., 2014. Seepage-stress coupled analysis on anisotropic characteristics of the fractured rock mass around roadway. Tunnelling and Underground Space Technology, 43:11-19. ![]() [36]Ye B, Cheng ZR, Ye WM, et al., 2019. An analytical solution for analyzing the sealing-efficiency of compressed air energy storage caverns. KSCE Journal of Civil Engineering, 23(5):2025-2035. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>