CLC number: TP183
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-07-20
Cited: 0
Clicked: 4611
Citations: Bibtex RefMan EndNote GB/T7714
Shivam Sharma, Rajneesh Awasthi, Yedlabala Sudhir Sastry, Pattabhi Ramaiah Budarapu. Physics-informed neural networks for estimating stress transfer mechanics in single lap joints[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2000403 @article{title="Physics-informed neural networks for estimating stress transfer mechanics in single lap joints", %0 Journal Article TY - JOUR
用于评估单搭接接头应力传递的物理神经网络创新点:1. 创建了一种新的基于物理神经网络(PINN)的深度机器学习(DML)方法来求解两个非齐次耦合四阶偏微分方程.2. 通过将开发的方法和闭合解(由MAPLE软件获得)进行对比,验证了结果的可靠性. 方法:1. 通过包含1个输入层、2到3个隐藏层和1个输出层的人工神经网络(ANN)实现本文提出的基于PINN的DML方法.2. 将边界和初始条件以及搭接接头组成部分的材料特性提供给输入层,在隐藏层中计算损失函数,并从输出层提取满足边界条件的σ1和σ3应力值. 结论:1. 通过基于DML框架的PINN方法研究单个搭接接头的力学,以及对受边界条件影响的耦合四阶非齐次偏微分方程的求解,所提方法可被扩展到多基板及其相间的各种应力分量的估计.2. 通过用所提方法估计界面剪切应力并将其与精确解对比发现,基于DML的方法获得的结果可有效表征物理行为. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abueidda DW, Almasri M, Ammourah R, et al., 2019. Prediction and optimization of mechanical properties of composites using convolutional neural networks. Composite Structures, 227:111264. ![]() [2]Adams RD, Mallick V, 1992. A method for the stress analysis of lap joints. The Journal of Adhesion, 38(3-4):199-217. ![]() [3]Ajayan PM, Schadler LS, Braun PV, 2003. Nanocomposite Science and Technology. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. ![]() [4]Anitescu C, Atroshchenko E, Alajlan N, et al., 2019. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 59(1):345-359. ![]() [5]Barile C, Casavola C, Moramarco V, et al., 2020. Bonding characteristics of single- and joggled-lap CFRP specimens: mechanical and acoustic investigations. Applied Sciences, 10(5):1782. ![]() [6]Barthelat F, 2014. Designing nacre-like materials for simultaneous stiffness, strength and toughness: optimum materials, composition, microstructure and size. Journal of the Mechanics and Physics of Solids, 73:22-37. ![]() [7]Barthelat F, Espinosa HD, 2007. An experimental investigation of deformation and fracture of nacre–mother of pearl. Experimental Mechanics, 47(3):311-324. ![]() [8]Barthelat F, Tang H, Zavattieri PD, et al., 2007. On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. Journal of the Mechanics and Physics of Solids, 55(2):306-337. ![]() [9]Beliaev M, Zöllner D, Pacureanu A, et al., 2020. Quantification of sheet nacre morphogenesis using X-ray nanotomography and deep learning. Journal of Structural Biology, 209(1):107432. ![]() [10]Bertoldi K, Bigoni D, Drugan WJ, 2008. Nacre: an orthotropic and bimodular elastic material. Composites Science and Technology, 68(6):1363-1375. ![]() [11]Budarapu PR, Yb SS, Javvaji B, et al., 2014. Vibration analysis of multi-walled carbon nanotubes embedded in elastic medium. Frontiers of Structural and Civil Engineering, 8(2):151-159. ![]() [12]Budarapu PR, Narayana TSS, Rammohan B, et al., 2015. Directionality of sound radiation from rectangular panels. Applied Acoustics, 89:128-140. ![]() [13]Budarapu PR, Kumar S, Prusty BG, et al., 2019. Stress transfer through the interphase in curved-fiber pullout tests of nanocomposites. Composites Part B: Engineering, 165:417-434. ![]() [14]Chen CT, Gu GX, 2019. Machine learning for composite materials. MRS Communications, 9(2):556-566. ![]() [15]Chen M, Mao SW, Zhang Y, et al., 2014. Big data generation and acquisition. In: Chen M, Mao SW, Zhang Y, et al. (Eds.), Big Data: Related Technologies, Challenges and Future Prospects. Springer, Cham, Switzerland, p.19-32. ![]() [16]Du GL, Mao AR, Yu JH, et al., 2019. Nacre-mimetic composite with intrinsic self-healing and shape-programming capability. Nature Communications, 10(1):800. ![]() [17]Espinosa HD, Rim JE, Barthelat F, et al., 2009. Merger of structure and material in nacre and bone–perspectives on de novo biomimetic materials. Progress in Materials Science, 54(8):1059-1100. ![]() [18]Fang ZW, Zhan J, 2020. A physics-informed neural network framework for PDEs on 3D surfaces: time independent problems. IEEE Access, 8:26328-26335. ![]() [19]Gim J, Schnitzer N, Otter LM, et al., 2019. Nanoscale deformation mechanics reveal resilience in nacre of Pinna nobilis shell. Nature Communications, 10(1):4822. ![]() [20]Goswami S, Anitescu C, Chakraborty S, et al., 2020. Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theoretical and Applied Fracture Mechanics, 106:102447. ![]() [21]Gunes R, Apalak MK, Yildirim M, 2011. Free vibration analysis of an adhesively bonded functionally graded tubular single lap joint. The Journal of Adhesion, 87(9):902-925. ![]() [22]Guo HW, Zhuang XY, Rabczuk T, 2019. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 59(2):433-456. ![]() [23]Gupta S, Modgil S, Gunasekaran A, 2020. Big data in lean six sigma: a review and further research directions. International Journal of Production Research, 58(3):947-969. ![]() [24]Gupta TK, Budarapu PR, Chappidi SR, et al., 2019. Advances in carbon based nanomaterials for bio-medical applications. Current Medicinal Chemistry, 26(38):6851-6877. ![]() [25]Her SC, Chan CF, 2019. Interfacial stress analysis of adhesively bonded lap joint. Materials, 12(15):2403. ![]() [26]Jackson AP, Vincent JFV, Turner RM, 1988. The mechanical design of nacre. Proceedings of the Royal Society B Biological Sciences, 234(1277):415-440. ![]() [27]Kadeethum T, Jørgensen TM, Nick HM, 2020. Physics-informed neural networks for solving nonlinear diffusivity and biot’s equations. PLoS One, 15(5):e0232683. ![]() [28]Lambiase F, Grossi V, Paoletti A, 2020. Machine learning applied for process design of hybrid metal-polymer joints. Journal of Manufacturing Processes, 58:92-100. ![]() [29]Magrini T, Bouville F, Lauria A, et al., 2019. Transparent and tough bulk composites inspired by nacre. Nature Communications, 10(1):2794. ![]() [30]Morsali S, Qian D, Minary-Jolandan M, 2020. Designing bioinspired brick-and-mortar composites using machine learning and statistical learning. Communications Materials, 1(1):12. ![]() [31]Ni Y, Song ZQ, Jiang HY, et al., 2015. Optimization design of strong and tough nacreous nanocomposites through tuning characteristic lengths. Journal of the Mechanics and Physics of Solids, 81:41-57. ![]() [32]Oh WB, Yun TJ, Lee BR, et al., 2019. A study on intelligent algorithm to control welding parameters for lap-joint. Procedia Manufacturing, 30:48-55. ![]() [33]Pan GR, Yao YM, Zeng XL, et al., 2017. Learning from natural nacre: constructing layered polymer composites with high thermal conductivity. ACS Applied Materials & Interfaces, 9(38):33001-33010. ![]() [34]Raissi M, Perdikaris P, Karniadakis GE, 2019. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686-707. ![]() [35]Rangaswamy H, Sogalad I, Basavarajappa S, et al., 2020. Experimental analysis and prediction of strength of adhesive-bonded single-lap composite joints: Taguchi and artificial neural network approaches. SN Applied Sciences, 2(6):1055. ![]() [36]Reinoso J, Durand P, Budarapu PR, et al., 2019. Crack patterns in heterogenous rocks using a combined phase field-cohesive interface modeling approach: a numerical study. Energies, 12(6):965. ![]() [37]Sacco C, Radwan AB, Anderson A, et al., 2020. Machine learning in composites manufacturing: a case study of automated fiber placement inspection. Composite Structures, 250:112514. ![]() [38]Samaniego E, Anitescu C, Goswami S, et al., 2020. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 362:112790. ![]() [39]Thongprayoon C, Kaewput W, Kovvuru K, et al., 2020. Promises of big data and artificial intelligence in nephrology and transplantation. Journal of Clinical Medicine, 9(4):1107. ![]() [40]Tosun E, Çalık A, 2016. Failure load prediction of single lap adhesive joints using artificial neural networks. Alexandria Engineering Journal, 55(2):1341-1346. ![]() [41]Waheed H, Hassan SU, Aljohani NR, et al., 2020. Predicting academic performance of students from VLE big data using deep learning models. Computers in Human Behavior, 104:106189. ![]() [42]Wang CH, Rose LRF, 2003. Stress analysis and failure assessment of lap joints. In: Tong LY, Soutis C (Eds.), Recent Advances in Structural Joints and Repairs for Composite Materials. Springer, Dordrecht, the Netherlands, p.1-26. ![]() [43]Xu D, Liu PF, Li JG, et al., 2019. Damage mode identification of adhesive composite joints under hygrothermal environment using acoustic emission and machine learning. Composite Structures, 211:351-363. ![]() [44]Yadav N, Yadav A, Kumar M, 2015. An Introduction to Neural Network Methods for Differential Equations. Springer, Dordrecht, the Netherlands. ![]() [45]Yang RJ, Yu L, Zhao YJ, et al., 2020. Big data analytics for financial Market volatility forecast based on support vector machine. International Journal of Information Management, 50:452-462. ![]() [46]Ye S, Li B, Li QY, et al., 2019. Deep neural network method for predicting the mechanical properties of composites. Applied Physics Letters, 115(16):161901. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>