CLC number: TU473.4
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2021-11-22
Cited: 0
Clicked: 4687
Citations: Bibtex RefMan EndNote GB/T7714
Min-jie Wen, Kui-hua Wang, Wen-bing Wu, Yun-peng Zhang, Hou-ren Xiong. Dynamic response of bilayered saturated porous media based on fractional thermoelastic theory[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2100084 @article{title="Dynamic response of bilayered saturated porous media based on fractional thermoelastic theory", %0 Journal Article TY - JOUR
基于分数阶热弹性理论的双层饱和多孔介质动力响应创新点:1. 将分数阶热弹性理论引入到Biot动力方程中,构建分数阶热-水-力耦合动力模型;2. 利用接触热阻模型和弹性波的反射和透射原理,构建双层饱和多孔介质的界面非完全热接触条件. 方法:1. 通过将分数阶热弹性理论引入到热-水-力耦合动力方程中,建立分数阶热-水-力耦合动力模型;2. 采用微分算子法,在频率域内得到温度增量、位移、孔隙水压力和应力的解析表达式;3. 利用接触热阻模型和弹性波的反射和透射原理,构建双层饱和多孔介质的界面非完全热接触条件和边界条件. 结论:1. 随着分数阶导数参数α1和α2的增加, 温度增量、位移、孔隙水压力和应力的响应幅值明显增加.同时,分数阶导数参数对热-水-力耦合响应的影响与界面的接触热阻有关.如果界面存在接触热阻,分数阶导数对系统响应的影响减弱.分数阶导数参数揭示了双层饱和多孔介质热-水-力耦合响应的热传导过程和热动力行为.2. 分数阶导数参数α2对温度增量、位移、孔隙水压力和应力的影响大于分数阶导数α1的影响.而且,随着分数阶导数α2的增加,第二层的响应幅值显著增加.3. 由于界面接触热阻的存在,界面温度增量存在跳跃现象,且随着接触热阻的增加变得更加明显.随着接触热阻的增加,位移、孔隙水压力和应力显著减小. 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abbas IA, Marin M, 2018. Analytical solutions of a two-dimensional generalized thermoelastic diffusions problem due to laser pulse. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 42(1):57-71. ![]() [2]Abbas IA, Alzahrani FS, Elaiw A, 2019. A DPL model of photothermal interaction in a semiconductor material. Waves in Random and Complex Media, 29(2):328-343. ![]() [3]Ai ZY, Wang LJ, 2015a. Axisymmetric thermal consolidation of multilayered porous thermoelastic media due to a heat source. International Journal for Numerical and Analytical Methods in Geomechanics, 39(17):1912-1931. ![]() [4]Ai ZY, Wang LJ, 2015b. Time-dependent analysis of 3D thermo-mechanical behavior of a layered half-space with anisotropic thermal diffusivity. Acta Mechanica, 226(9):2939-2954. ![]() [5]Ai ZY, Wang LJ, 2016. Three-dimensional thermo-hydro-mechanical responses of stratified saturated porothermoelastic material. Applied Mathematical Modelling, 40(21-22):8912-8933. ![]() [6]Ai ZY, Ye Z, Zhao Z, et al., 2018. Time-dependent behavior of axisymmetric thermal consolidation for multilayered transversely isotropic poroelastic material. Applied Mathematical Modelling, 61:216-236. ![]() [7]Alzahrani F, Abbas IA, 2020. Generalized thermoelastic interactions in a poroelastic material without energy dissipations. International Journal of Thermophysics, 41(7):95. ![]() [8]Alzahrani F, Hobiny A, Abbas I, et al., 2020. An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities. Symmetry, 12(5):848. ![]() [9]Bhatti MM, Marin M, Zeeshan A, et al., 2020. Swimming of motile gyrotactic microorganisms and nanoparticles in blood flow through anisotropically tapered arteries. Frontiers in Physics, 8:95. ![]() [10]Biot MA, 1956. Thermoelasticity and irreversible thermodynamics. Journal of Applied Physics, 27(3):240-253. ![]() [11]Booker JR, Savvidou C, 1984. Consolidation around a spherical heat source. International Journal of Solids and Structures, 20(11-12):1079-1090. ![]() [12]Carr EJ, March NG, 2018. Semi-analytical solution of multilayer diffusion problems with time-varying boundary conditions and general interface conditions. Applied Mathematics and Computation, 333:286-303. ![]() [13]Deswal S, Kalkal KK, 2013. Fractional order heat conduction law in micropolar thermo-viscoelasticity with two temperatures. International Journal of Heat and Mass Transfer, 66:451-460. ![]() [14]Ezzat MA, El-Karamany AS, El-Bary AA, 2015. On thermo-viscoelasticity with variable thermal conductivity and fractional-order heat transfer. International Journal of Thermophysics, 36(7):1684-1697. ![]() [15]Green AE, Lindsay KA, 1972. Thermoelasticity. Journal of Elasticity, 2(1):1-7. ![]() [16]He TH, Zhang P, Xu C, et al., 2019. Transient response analysis of a spherical shell embedded in an infinite thermoelastic medium based on a memory-dependent generalized thermoelasticity. Journal of Thermal Stresses, 42(8):943-961. ![]() [17]Hobiny A, Abbas I, 2020. Fractional order GN model on photo-thermal interaction in a semiconductor plane. Silicon, 12(8):1957-1964. ![]() [18]Hobiny A, Abbas I, 2021. Analytical solutions of fractional bioheat model in a spherical tissue. Mechanics Based Design of Structures and Machines, 49(3):430-439. ![]() [19]Hussein EM, 2015. Fractional order thermoelastic problem for an infinitely long solid circular cylinder. Journal of Thermal Stresses, 38(2):133-145. ![]() [20]Hussein EM, 2018. Effect of the porosity on a porous plate saturated with a liquid and subjected to a sudden change in temperature. Acta Mechanica, 229(6):2431-2444. ![]() [21]Kek-Kiong T, Sadhal SS, 1992. Thermal constriction resistance: effects of boundary conditions and contact geometries. International Journal of Heat and Mass Transfer, 35(6):1533-1544. ![]() [22]Khan AA, Bukhari SR, Marin M, et al., 2019. Effects of chemical reaction on third-grade MHD fluid flow under the influence of heat and mass transfer with variable reactive index. Heat Transfer Research, 50(11):1061-1080. ![]() [23]Levy A, Sorek S, Ben-Dor G, et al., 1995. Evolution of the balance equations in saturated thermoelastic porous media following abrupt simultaneous changes in pressure and temperature. Transport in Porous Media, 21(3):241-268. ![]() [24]Li CL, Tian XG, He TH, 2020. Transient thermomechanical responses of multilayered viscoelastic composite structure with non-idealized interfacial conditions in the context of generalized thermoviscoelasticity theory with time-fractional order strain. Journal of Thermal Stresses, 43(7):895-928. ![]() [25]Li CX, Xie KH, 2013. One-dimensional nonlinear consolidation of soft clay with the non-Darcian flow. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(6):435-446. ![]() [26]Li CX, Xie KH, Wang K, 2010. Analysis of 1D consolidation with non-Darcian flow described by exponent and threshold gradient. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 11(9):656-667. ![]() [27]Li CX, Xie KH, Hu AF, et al., 2012. One-dimensional consolidation of double-layered soil with non-Darcian flow described by exponent and threshold gradient. Journal of Central South University, 19(2):562-571. ![]() [28]Li CX, Wang CJ, Lu MM, et al., 2017. One-dimensional large-strain consolidation of soft clay with non-Darcian flow and nonlinear compression and permeability of soil. Journal of Central South University, 24(4):967-976. ![]() [29]Li CX, Xiao JY, Wu WB, et al., 2020. Analysis of 1D large strain consolidation of structured marine soft clays. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(1):29-43. ![]() [30]Liu GB, Xie KH, Zheng RY, 2009. Model of nonlinear coupled thermo-hydro-elastodynamics response for a saturated poroelastic medium. Science in China Series E: Technological Sciences, 52(8):2373-2383. ![]() [31]Liu GB, Liu XH, Ye RH, 2010a. The relaxation effects of a saturated porous media using the generalized thermoviscoelasticity theory. International Journal of Engineering Science, 48(9):795-808. ![]() [32]Liu GB, Xie KH, Zheng RY, 2010b. Thermo-elastodynamic response of a spherical cavity in saturated poroelastic medium. Applied Mathematical Modelling, 34(8):2203-2222. ![]() [33]Lord HW, Shulman Y, 1967. A generalized dynamical theory of thermoelasticity. Journal of the Mechanics and Physics of Solids, 15(5):299-309. ![]() [34]Lu Z, Yao HL, Liu GB, 2010. Thermomechanical response of a poroelastic half-space soil medium subjected to time harmonic loads. Computers and Geotechnics, 37(3):343-350. ![]() [35]Mei GX, Yin JH, 2008. Coupled model of consolidation and creep for consolidation test. Journal of Central South University, 15(S1):357-361. ![]() [36]Mei GX, Chen QM, 2013. Solution of Terzaghi one-dimensional consolidation equation with general boundary conditions. Journal of Central South University, 20(8):2239-2244. ![]() [37]Peng W, Ma YB, Li CL, et al., 2020. Dynamic analysis to the fractional order thermoelastic diffusion problem of an infinite body with a spherical cavity and variable material properties. Journal of Thermal Stresses, 43(1):38-54. ![]() [38]Saeed T, Abbas I, Marin M, 2020. A GL model on thermo-elastic interaction in a poroelastic material using finite element method. Symmetry, 12(3):488. ![]() [39]Sherief HH, Hussein EM, 2012. A mathematical model for short-time filtration in poroelastic media with thermal relaxation and two temperatures. Transport in Porous Media, 91(1):199-223. ![]() [40]Sherief HH, El-Latief AMA, 2013. Effect of variable thermal conductivity on a half-space under the fractional order theory of thermoelasticity. International Journal of Mechanical Sciences, 74:185-189. ![]() [41]Sherief HH, El-Sayed AMA, El-Latief AMA, 2010. Fractional order theory of thermoelasticity. International Journal of Solids and Structures, 47(2):269-275. ![]() [42]Sherief HH, El-Latief AMA, 2015. A one-dimensional fractional order thermoelastic problem for a spherical cavity. Mathematics and Mechanics of Solids, 20(5):512-521. ![]() [43]Singh B, 2013. Elastic wave propagation and attenuation in a generalized thermoporoelastic model. Multidiscipline Modeling in Materials and Structures, 9(2):256-267. ![]() [44]Tao HB, Liu GB, Xie KH, et al., 2014. Characteristics of wave propagation in the saturated thermoelastic porous medium. Transport in Porous Media, 103(1):47-68. ![]() [45]Wang LJ, Wang LH, 2020. Semianalytical analysis of creep and thermal consolidation behaviors in layered saturated clays. International Journal of Geomechanics, 20(4):06020001. ![]() [46]Wang N, Wang KH, Wu WB, 2013. Analytical model of vertical vibrations in piles for different tip boundary conditions: parametric study and applications. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 14(2):79-93. ![]() [47]Wen MJ, Xu JM, Xiong HR, 2020. Thermo-hydro-mechanical dynamic response of a cylindrical lined tunnel in a poroelastic medium with fractional thermoelastic theory. Soil Dynamics and Earthquake Engineering, 130:105960. ![]() [48]Xue ZN, Yu YJ, Li CL, et al., 2016. Application of fractional order theory of thermoelasticity to a bilayered structure with interfacial conditions. Journal of Thermal Stresses, 39(9):1017-1034. ![]() [49]Xue ZN, Yu YJ, Tian XG, 2017. Transient responses of multi-layered structures with interfacial conditions in the generalized thermoelastic diffusion theory. International Journal of Mechanical Sciences, 131-132:63-74. ![]() [50]Xue ZN, Yu YJ, Li XY, et al., 2019. Study of a generalized thermoelastic diffusion bi-layered structures with variable thermal conductivity and mass diffusivity. Waves in Random and Complex Media, 29(1):34-53. ![]() [51]Xue ZN, Tian XG, Liu JL, 2020. Non-classical hygrothermal fracture behavior of a hollow cylinder with a circumferential crack. Engineering Fracture Mechanics, 224: 106805. ![]() [52]Youssef HM, 2007. Theory of generalized porothermoelasticity. International Journal of Rock Mechanics and Mining Sciences, 44(2):222-227. ![]() [53]Youssef HM, 2010. Theory of fractional order generalized thermoelasticity. Journal of Heat Transfer, 132(6):061301. ![]() [54]Yovanovich MM, 2005. Four decades of research on thermal contact, gap, and joint resistance in microelectronics. IEEE Transactions on Components and Packaging Technologies, 28(2):182-206. ![]() [55]Yuan KL, Wen MJ, Wang WY, et al., 2021. Nonlocal thermodynamic response of thermal insulation layer-substrate wall system considering the temperature-dependent thermal material properties. Journal of Thermal Stresses, 44(2):214-235. ![]() [56]Zhang YP, Liu H, Wu WB, et al., 2021. A 3D analytical model for distributed low strain test and parallel seismic test of pipe piles. Ocean Engineering, 225:108828. ![]() [57]Zhang YP, Jiang GS, Wu WB, et al., 2022. Analytical solution for distributed torsional low strain integrity test for pipe pile. International Journal for Numerical and Analytical Methods in Geomechanics, 46(1):47-67. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>