CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2022-11-28
Cited: 0
Clicked: 2108
Jian CHANG, Jian-kun LIU, Ya-li LI. Frozen sand–concrete interface direct shear behavior under constant normal load and constant normal height boundary[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200118 @article{title="Frozen sand–concrete interface direct shear behavior under constant normal load and constant normal height boundary", %0 Journal Article TY - JOUR
常法向应力和常法向位移边界条件下冻结砂-混凝土接触面直剪特性机构:1北京交通大学,土木建筑工程学院,中国北京,100044;2中山大学,土木工程学院,中国珠海,519082;3南方海洋科学与工程广东实验室(珠海),中国珠海,591082 目的:探究不同边界条件下,初始法向应力和温度对冻结砂-混凝土接触面剪切变形和强度特性、法向变形特性以及冰胶结特性的影响。 创新点:1.在不同边界条件下对冻结砂-混凝土结构进行直剪试验,了解接触面法向和切向特性;2.建立试验模型,成功模拟弹性剪切模量和强度随温度及初始法向应力的变化关系。 方法:1.通过实验分析,得到冻结接触面弹性模量和强度特性随温度和初始法向应力的变化(图14~21和表2~5);2.通过理论推导,构建温度、法向应力与弹性剪切模量和剪切强度之间的关系,得到相应的计算模型(公式(1)~(6))。 结论:1.不同边界条件下,冻结接触面均表现出应变软化特性;2.弹性剪切模量随初始法向应力的增加和温度的降低呈线性增长趋势;3.冻结接触面剪切强度随初始法向应力的增加线性增长,而随温度的降低呈指数增长。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AldaeefAA, RayhaniMT, 2021. Pile-soil interface characteristics in ice-poor frozen ground under varying exposure temperature. Cold Regions Science and Technology, 191:103377. ![]() [2]BiggarKW, SegoDC, 1993. Field pile load tests in saline permafrost. I. Test procedures and results. Canadian Geotechnical Journal, 30(1):34-45. ![]() [3]ChangJ, LiuJK, LiYL, et al., 2022. Elastoplastic behavior of frozen sand–concrete interfaces under cyclic shear loading. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(9):683-703. ![]() [4]ChenWH, LuoQ, LiuJK, et al., 2022. Modeling of frozen soil-structure interface shear behavior by supervised deep learning. Cold Regions Science and Technology, 200:103589. ![]() [5]ChengYF, LuXL, LiuHQ, et al., 2004. Model test study on pile foundation of 110 kV transmission line of Qinghai-Tibet railway in frozen soils. Chinese Journal of Rock Mechanics and Engineering, 23(S1):4378-4382 (in Chinese). ![]() [6]ChoiCH, KoSG, 2011. A study for predicting adfreeze bond strength from shear strength of frozen soil. Journal of the Korean Geotechnical Society, 27(10):13-23. ![]() [7]ChooCS, OngDEL, 2020. Assessment of non-linear rock strength parameters for the estimation of pipe-jacking forces. Part 2. Numerical modeling. Engineering Geology, 265:105405. ![]() [8]de GennaroV, FrankR, 2002. Elasto-plastic analysis of the interface behaviour between granular media and structure. Computers and Geotechnics, 29(7):547-572. ![]() [9]de Hollanda Cavalcanti TsuhaC, dos Santos Filho JMSM, da Costa SantosT, 2016. Helical piles in unsaturated structured soil: a case study. Canadian Geotechnical Journal, 53(1):103-117. ![]() [10]DeJongJT, RandolphMF, WhiteDJ, 2003. Interface load transfer degradation during cyclic loading: a microscale investigation. Soils and Foundations, 43(4):81-93. ![]() [11]EvginE, FakharianK, 1996. Effect of stress paths on the behaviour of sand-steel interfaces. Canadian Geotechnical Journal, 33(6):853-865. ![]() [12]FakharianK, 1996. Three-Dimensional Monotonic and Cyclic Behaviour of Sand-Steel Interfaces: Testing and Modelling. PhD Thesis, University of Ottawa, Ottawa, Canada. ![]() [13]HePF, MaW, MuYH, et al., 2018. Study on freezing strength characteristics and formation mechanism of frozen soil-concrete interface. Transactions of the Chinese Society of Agricultural Engineering, 34(23):127-133 (in Chinese). ![]() [14]JiYJ, JiaK, YuQH, et al., 2017. Direct shear tests of freezing strength at the interface between cast-in-situ concrete and frozen soil. Journal of Glaciology and Geocryology, 39(1):86-91. ![]() [15]JohnstonIW, LamTSK, WilliamsAF, 1987. Constant normal stiffness direct shear testing for socketed pile design in weak rock. Géotechnique, 37(1):83-89. ![]() [16]KoSG, ChoiCH, 2011. Experimental study on adfreeze bond strength between frozen sand and aluminium with varying freezing temperature and vertical confining pressure. Journal of the Korean Geotechnical Society, 27(9):67-76. ![]() [17]LadanyiB, 1995. Frozen soil-structure interfaces. Studies in Applied Mechanics, 42:3-33. ![]() [18]LashkariA, 2013. Prediction of the shaft resistance of nondisplacement piles in sand. International Journal for Numerical and Analytical Methods in Geomechanics, 37(8):904-931. ![]() [19]LeeJ, KimY, ChoiC, 2013. A study for adfreeze bond strength developed between weathered granite soils and aluminum plate. Journal of the Korean GEO-Environmental Society, 14(12):23-30. ![]() [20]MortaraG, MangiolaA, GhionnaVN, 2007. Cyclic shear stress degradation and post-cyclic behaviour from sand-steel interface direct shear tests. Canadian Geotechnical Journal, 44(7):739-752. ![]() [21]PanYM, WangBX, ZhangZQ, et al., 2022. Analysis on mechanical properties of thawing soil-concrete interface. Journal of Henan Polytechnic University (Natural Science), 41(1):167-173 (in Chinese). ![]() [22]PeerunMI, OngDEL, ChooCS, 2019. Interpretation of geomaterial behavior during shearing aided by PIV technology. Journal of Materials in Civil Engineering, 31(9):04019195. ![]() [23]PeerunMI, OngDEL, ChooCS, et al., 2020. Effect of interparticle behavior on the development of soil arching in soil-structure interaction. Tunnelling and Underground Space Technology, 106:103610. ![]() [24]PuswewalaUGA, 1991. Computational Modelling of Structure-Frozen Soil/Ice Interaction. PhD Thesis, University of Manitoba, Manitoba, Canada. ![]() [25]RoggensackWD, MorgensternNR, 1978. Direct shear tests on natural fine-grained permafrost soils. Proceedings of the 3rd International Permafrost Conference, p.728-735. ![]() [26]SaberiM, AnnanCD, KonradJM, 2018a. On the mechanics and modeling of interfaces between granular soils and structural materials. Archives of Civil and Mechanical Engineering, 18(4):1562-1579. ![]() [27]SaberiM, AnnanCD, KonradJM, 2018b. A unified constitutive model for simulating stress-path dependency of sandy and gravelly soil–structure interfaces. International Journal of Non-Linear Mechanics, 102:1-13. ![]() [28]ShiQB, YangP, 2021. Construction of statistical shear damage model at the interface between frozen fine sand and steel plate. Journal of Railway Science and Engineering, 18(10):2591-2599 (in Chinese). ![]() [29]ShiS, ZhangF, FengDC, et al., 2020. Experimental investigation on shear characteristics of ice–frozen clay interface. Cold Regions Science and Technology, 176:103090. ![]() [30]SumitaniD, UedaY, OhraiT, 2007. Study on adfreeze shear strength of frozen sand along curved interface. Journal of the Japanese Society of Snow and Ice, 69(3):347-356. ![]() [31]SunTC, GaoXJ, LiaoYM, et al., 2021. Experimental study on adfreezing strength at the interface between silt and concrete. Cold Regions Science and Technology, 190:103346. ![]() [32]SunZH, BianHB, WangCY, et al., 2020. Significance analysis of factors of freezing strength between silty clay and concrete lining. Journal of Glaciology and Geocryology, 42(2):508-514. ![]() [33]TabucanonJT, AireyDW, PoulosHG, 1995. Pile skin friction in sands from constant normal stiffness tests. Geotechnical Testing Journal, 18(3):350-364. ![]() [34]UedaY, MoriuchiK, OhraiT, 2004. Influence of normal stress on the adfreeze interface on adfreeze shear strength of frozen soil. Journal of the Japanese Society of Snow and Ice, 66(2):197-205. ![]() [35]VolokhovSS, 2003. Effect of freezing conditions on the shear strength of soils frozen together with materials. Soil Mechanics and Foundation Engineering, 40(6):233-238. ![]() [36]WangRH, WangW, ChengYF, 2006. Model study of tensile bearing capacity of a single pile under frozen condition. Journal of Glaciology and Geocryology, 28(5):766-771 (in Chinese). ![]() [37]WangRS, OngDEL, PeerunMI, et al., 2022. Influence of surface roughness and particle characteristics on soil–structure interactions: a state-of-the-art review. Geosciences, 12(4):145. ![]() [38]WenZ, YuQH, MaW, et al., 2013. Direct shear tests for mechanical characteristics of interface between Qinghai-Tibetan silt and fiberglass reinforced plastics. Rock and Soil Mechanics, 34(S2):45-50 (in Chinese). ![]() [39]ZhangJW, MaW, WangDY, et al., 2008. In-situ experimental study of the bearing characteristics of cast-in-place bored pile in permafrost regions of the Tibetan Plateau. Journal of Glaciology and Geocryology, 30(3):482-487 (in Chinese). ![]() [40]ZhangQ, ZhangJM, WangHL, et al., 2021. Mechanical behavior and constitutive relation of the interface between warm frozen silt and cemented soil. Transportation Geotechnics, 30:100624. ![]() [41]ZhouZW, MaW, ZhangSJ, et al., 2020. Experimental investigation of the path-dependent strength and deformation behaviours of frozen loess. Engineering Geology, 265:105449. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>