CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2022-11-28
Cited: 0
Clicked: 2117
Peng XU, Peng PENG, Rong-hua WEI, Zhi-qiang ZHANG. Model test of the mechanism underpinning water-and-mud inrush disasters during tunnel excavation in sandstone and slate interbedded Presinian strata[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200134 @article{title="Model test of the mechanism underpinning water-and-mud inrush disasters during tunnel excavation in sandstone and slate interbedded Presinian strata", %0 Journal Article TY - JOUR
前震旦系砂岩与板岩互层地层隧道开挖突水突泥灾害机理模型试验机构:1西南交通大学,土木工程学院,中国成都,610031;2西南交通大学,交通隧道工程教育部重点实验室,中国成都,610031 目的:前震旦系砂板岩互层地层突水突泥灾害给隧道工程建设带来了巨大的困难。本文旨在通过室内模型试验,再现前震旦系砂板岩互层隧道突水突泥灾害的灾变演化过程,分析围岩应力应变、渗透压力与流量随隔水层厚度减小的变化规律,揭示砂板岩互层隧道隔水层渗透失稳突水突泥的灾变诱发机制,为突水突泥灾害的防控提供重要参考。 创新点:1.建立了前震旦系砂板岩互层隧道突水突泥工程地质模型;2.通过模型试验再现了前震旦系砂板岩互层隧道突水突泥灾变演化过程;3.揭示了隔水层厚度减小过程中隧道围岩应力应变、渗流压力与流量等特征参数的变化规律。 方法:1.通过突水突泥灾害统计(图3和6)和地质结构特征(图4和5)分析,构建前震旦系砂板岩互层隧道突水突泥工程地质模型(图7);2.通过正交试验设计和材料配比试验,研制板岩和砂岩的流固耦合相似材料(图12和13);3.通过模型试验,再现前震旦系砂板岩互层隧道突水突泥灾变演化过程(图16)。 结论:1.前震旦系砂板岩互层隧道突水突泥灾变演化过程可划分为渗流阶段、高涌流阶段和衰减阶段3个阶段,围岩应力应变、渗流压力与流量的变化具有阶段性特征;2.围岩应变能密度特征揭示了地下水对围岩的侵蚀弱化作用。随着应变能密度的增大,围岩稳定性减弱,而拱顶在渗流阶段的应变能密度比拱肩高20.7%;3.渗流压力与隔水层厚度呈线性正相关关系,流量与隔水层厚度呈线性负相关关系。特征参数突变点为隔水层劣化特征点,该点对应的隔水层厚度为临界安全厚度;4.突水突泥本质上是在开挖卸荷和应力-渗流耦合作用下突水突泥通道的形成、隔水层厚度减小到临界厚度、隔水层逐渐丧失阻水能力的灾变过程。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]ChooCS, OngDEL, 2020. Assessment of non-linear rock strength parameters for the estimation of pipe-jacking forces. Part 2. Numerical modeling. Engineering Geology, 265:105405. ![]() [2]FanHB, ZhangYH, HeSY, et al., 2018. Hazards and treatment of karst tunneling in Qinling-Daba mountainous area: overview and lessons learnt from Yichang-Wanzhou Railway system. Environmental Earth Sciences, 77(19):679. ![]() [3]JiangHM, LiL, RongXL, et al., 2017. Model test to investigate waterproof-resistant slab minimum safety thickness for water inrush geohazards. Tunnelling and Underground Space Technology, 62:35-42. ![]() [4]LiG, MaWB, TianSM, et al., 2021. Groundwater inrush control and parameters optimization of curtain grouting reinforcement for the Jingzhai Tunnel. Geofluids, 2021:6634513. ![]() [5]LiLP, TuWF, ShiSS, et al., 2016. Mechanism of water inrush in tunnel construction in karst area. Geomatics, Natural Hazards and Risk, 7(S1):35-46. ![]() [6]LiLP, SunSQ, WangJ, et al., 2020. Experimental study of the precursor information of the water inrush in shield tunnels due to the proximity of a water-filled cave. International Journal of Rock Mechanics and Mining Sciences, 130:104320. ![]() [7]LiSC, LiuHL, LiLP, et al., 2016. Large scale three-dimensional seepage analysis model test and numerical simulation research on undersea tunnel. Applied Ocean Research, 59:510-520. ![]() [8]LiSC, GaoCL, ZhouZQ, et al., 2019. Analysis on the precursor information of water inrush in karst tunnels: a true triaxial model test study. Rock Mechanics and Rock Engineering, 52(2):373-384. ![]() [9]LiangDX, JiangZQ, ZhuSY, et al., 2016. Experimental research on water inrush in tunnel construction. Natural Hazards, 81(1):467-480. ![]() [10]MaD, BaiHB, MiaoXX, et al., 2016. Compaction and seepage properties of crushed limestone particle mixture: an experimental investigation for Ordovician karst collapse pillar groundwater inrush. Environmental Earth Sciences, 75(1):11. ![]() [11]OngDEL, JongSC, ChengWC, 2022. Ground and groundwater responses due to shaft excavation in organic soils. Journal of Geotechnical and Geoenvironmental Engineering, 148(8):05022003. ![]() [12]PanDD, LiSC, XuZH, et al., 2019. Experimental and numerical study of the water inrush mechanisms of underground tunnels due to the proximity of a water-filled karst cavern. Bulletin of Engineering Geology and the Environment, 78(8):6207-6219. ![]() [13]WangJ, LiSC, LiLP, et al., 2020. Mechanism of water inrush in fractures and block collapse under hydraulic pressure. Mathematics and Computers in Simulation, 177:625-642. ![]() [14]WangXT, LiSC, XuZH, et al., 2019. Risk assessment of water inrush in karst tunnels excavation based on normal cloud model. Bulletin of Engineering Geology and the Environment, 78(5):3783-3798. ![]() [15]WuJ, LiSC, XuZH, et al., 2017. Flow characteristics and escape-route optimization after water inrush in a backward-excavated karst tunnel. International Journal of Geomechanics, 17(4):04016096. ![]() [16]XuZL, LuoYB, ChenJX, et al., 2021. Mechanical properties and reasonable proportioning of similar materials in physical model test of tunnel lining cracking. Construction and Building Materials, 300:123960. ![]() [17]XueYG, KongFM, LiSC, et al., 2021. Water and mud inrush hazard in underground engineering: genesis, evolution and prevention. Tunnelling and Underground Space Technology, 114:103987. ![]() [18]YangJ, YinZY, LaouafaF, et al., 2019a. Internal erosion in dike-on-foundation modeled by a coupled hydromechanical approach. International Journal for Numerical and Analytical Methods in Geomechanics, 43(3):663-683. ![]() [19]YangJ, YinZY, LaouafaF, et al., 2019b. Modeling coupled erosion and filtration of fine particles in granular media. Acta Geotechnica, 14(6):1615-1627. ![]() [20]YangJ, YinZY, LaouafaF, et al., 2020a. Hydromechanical modeling of granular soils considering internal erosion. Canadian Geotechnical Journal, 57(2):157-172. ![]() [21]YangJ, YinZY, LaouafaF, et al., 2020b. Three-dimensional hydromechanical modeling of internal erosion in dike-on-foundation. International Journal for Numerical and Analytical Methods in Geomechanics, 44(8):1200-1218. ![]() [22]YangJ, YinZY, LiuYJ, et al., 2022. Multiphysics modelling of backfill grouting in sandy soils during TBM tunnelling. Acta Geotechnica, in press. ![]() [23]YangWM, FangZD, WangH, et al., 2019a. Analysis on water inrush process of tunnel with large buried depth and high water pressure. Processes, 7(3):134. ![]() [24]YangWM, YangX, FangZD, et al., 2019b. Model test for water inrush caused by karst caves filled with confined water in tunnels. Arabian Journal of Geosciences, 12(24):749. ![]() [25]YangWM, WangMX, ZhouZQ, et al., 2019c. A true triaxial geomechanical model test apparatus for studying the precursory information of water inrush from impermeable rock mass failure. Tunnelling and Underground Space Technology, 93:103078. ![]() [26]ZhangSC, GuoWJ, LiYY, et al., 2017. Experimental simulation of fault water inrush channel evolution in a coal mine floor. Mine Water and the Environment, 36(3):443-451. ![]() [27]ZhaoN, WangYC, MengB, et al., 2018. Numerical simulation on the seepage properties of soil-rock mixture. Advances in Materials Science and Engineering, 2018:1859319. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>