CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-02-01
Cited: 0
Clicked: 1530
Xia YAN, Pi-yang LIU, Zhao-qin HUANG, Hai SUN, Kai ZHANG, Jun-feng WANG, Xia YAN. Effect of hydraulic fracture deformation hysteresis on CO2huff-n-puff performance in shale gas reservoirs[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200142 @article{title="Effect of hydraulic fracture deformation hysteresis on CO2huff-n-puff performance in shale gas reservoirs", %0 Journal Article TY - JOUR
水力裂缝变形滞后对页岩气藏CO2吞吐的影响研究机构:1中国石油大学(华东),石油工程学院,中国青岛,266580;2青岛理工大学,土木工程学院,中国青岛,266520;3中国石油川庆钻探工程有限公司,川东钻探公司,中国重庆,40112 目的:在页岩气藏CO2吞吐过程中,水力裂缝处于循环载荷作用下时,极易发生不可逆变形(变形滞后),影响吞吐效果。本文旨在建立考虑水力裂缝变形滞后的页岩气藏CO2吞吐流固耦合模型,形成相应的高效求解方法,并开展流固耦合数值模拟研究,以揭示变形滞后对CO2吞吐的影响规律。 创新点:1.建立考虑水力裂缝变形滞后、复杂裂缝系统和特殊流动机理的页岩气藏多组分流固耦合模型,并形成相应的三维高效数值模拟技术;2.揭示水力裂缝变形滞后对页岩气藏CO2吞吐的影响规律。 方法:1.建立考虑水力裂缝变形滞后、复杂裂缝系统和特殊流动机理的页岩气藏多组分流固耦合模型;2.基于结构化网格构造高效稳定的多组分流固耦合模型数值求解算法;3.通过流固耦合数值模拟,揭示水力裂缝变形滞后对页岩气藏CO2吞吐的影响规律。 结论:1.水力裂缝变形滞后会阻碍CO2注入期间裂缝渗透率的恢复,对CO2吞吐有负面影响;2.较低的初始水力裂缝导流能力和生产压力、较晚的吞吐启动时间、较高的注入压力和较多的循环次数均会增强变形滞后的负面影响;3.CO2吞吐效果与初始水力裂缝导流能力、吞吐启动时间、注入压力和循环次数呈正相关,与生产压力呈负相关。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1](Computer Modelling Group)CMG, 2015. GEM User’s Guide. Computer Modelling Group, Calgary, Canada. [2]COMSOL, 1998. Introduction to COMSOL Multiphysics®. COMSOL, Burlington, USA. [3]DuFS, NojabaeiB, 2019. A review of gas injection in shale reservoirs: enhanced oil/gas recovery approaches and greenhouse gas control. Energies, 12(12):2355. [4]FanWP, SunH, YaoJ, et al., 2019. An upscaled transport model for shale gas considering multiple mechanisms and heterogeneity based on homogenization theory. Journal of Petroleum Science and Engineering, 183:106392. [5]FathiE, AkkutluIY, 2014. Multi-component gas transport and adsorption effects during CO2 injection and enhanced shale gas recovery. International Journal of Coal Geology, 123:52-61. [6]GalaD, SharmaM, 2018. Compositional and geomechanical effects in huff-n-puff gas injection IOR in tight oil reservoirs. SPE Annual Technical Conference and Exhibition, p.1-24. [7]GaripovTT, Karimi-FardM, TchelepiHA, 2016. Discrete fracture model for coupled flow and geomechanics. Computational Geosciences, 20(1):149-160. [8]GhanizadehA, ClarksonCR, DeglintH, et al., 2016. Unpropped/propped fracture permeability and proppant embedment evaluation: a rigorous core-analysis/imaging methodology. Proceedings of the SPE/AAPG/SEG Unconventional Resources Technology Conference, p.1824-1852. [9]GigerF, ReissL, JourdanA, 1984. The reservoir engineering aspects of horizontal drilling. SPE Annual Technical Conference and Exhibition, p.1-8. [10]GodecM, KopernaG, PetrusakR, et al., 2014. Enhanced gas recovery and CO2 storage in gas shales: a summary review of its status and potential. Energy Procedia, 63:5849-5857. [11]HasanM, EliebidM, MahmoudM, et al., 2017. Enhanced gas recovery (EGR) methods and production enhancement techniques for shale & tight gas reservoirs. SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, p.1-9. [12]HuangJW, JinTY, BarrufetM, et al., 2020. Evaluation of CO2 injection into shale gas reservoirs considering dispersed distribution of kerogen. Applied Energy, 260:114285. [13]HubbertM, WillisDG, 1957. Mechanics of hydraulic fracturing. Transactions of the AIME, 210(1):153-168. [14]IEA (International Energy Agency), 2021. Levelised Cost of CO2 Capture by Sector and Initial CO2 Concentration, 2019. IEA, Paris, France. https://www.iea.org/data-and-statistics/charts/levelised-cost-of-co2-capture-by-sector-and-initial-co2-concentration-2019 [15]IEA (International Energy Agency), 2022. Natural Gas Prices in Europe, Asia and the United States, Jan 2020-February 2022. IEA, Paris, France. https://www.iea.org/data-and-statistics/charts/natural-gas-prices-in-europe-asia-and-the-united-states-jan-2020-february-2022 [16]JaegerJC, CookNGW, ZimmermanRW, 2007. Fundamentals of Rock Mechanics, 4th Edition. Blackwell Publishing, Oxford, UK, p.189-194. [17]JiangJM, YangJ, 2018. Coupled fluid flow and geomechanics modeling of stress-sensitive production behavior in fractured shale gas reservoirs. International Journal of Rock Mechanics and Mining Sciences, 101:1-12. [18]JiangJM, ShaoYY, YounisRM, 2014. Development of a multi-continuum multi-component model for enhanced gas recovery and CO2 storage in fractured shale gas reservoirs. SPE Improved Oil Recovery Symposium, p.1-17. [19]KarlssonH, JacquesGE, HattenJL, et al., 1991. Method and Apparatus for Horizontal Drilling. US Patent 5074366. [20]KhoeiAR, 2014. Extended Finite Element Method: Theory and Applications. John Wiley & Sons, Chichester, UK. [21]KimJ, MoridisGJ, 2014. Gas flow tightly coupled to elastoplastic geomechanics for tight-and shale-gas reservoirs: material failure and enhanced permeability. SPE Journal, 19(6):1110-1125. [22]KimJ, SonnenthalEL, RutqvistJ, 2012. Formulation and sequential numerical algorithms of coupled fluid/heat flow and geomechanics for multiple porosity materials. International Journal for Numerical Methods in Engineering, 92(5):425-456. [23]KimTH, ChoJ, LeeKS, 2017. Evaluation of CO2 injection in shale gas reservoirs with multi-component transport and geomechanical effects. Applied Energy, 190:1195-1206. [24]LiHL, LuYY, ZhouL, et al., 2017. A new constitutive model for calculating the loading-path dependent proppant deformation and damage analysis of fracture conductivity. Journal of Natural Gas Science and Engineering, 46:365-374. [25]LiZY, ElsworthD, 2019. Controls of CO2–N2 gas flood ratios on enhanced shale gas recovery and ultimate CO2 sequestration. Journal of Petroleum Science and Engineering, 179:1037-1045. [26]LiuFS, BorjaRI, 2010. Stabilized low-order finite elements for frictional contact with the extended finite element method. Computer Methods in Applied Mechanics and Engineering, 199(37-40):2456-2471. [27]LiuJ, WangJG, GaoF, et al., 2019. A fully coupled fracture equivalent continuum-dual porosity model for hydro-mechanical process in fractured shale gas reservoirs. Computers and Geotechnics, 106:143-160. [28]LiuJS, ChenZW, ElsworthD, et al., 2011. Interactions of multiple processes during CBM extraction: a critical review. International Journal of Coal Geology, 87(3-4):175-189. [29]LiuLJ, YaoJ, SunH, et al., 2019. Compositional modeling of shale condensate gas flow with multiple transport mechanisms. Journal of Petroleum Science and Engineering, 172:1186-1201. [30]LiuLJ, LiuYZ, YaoJ, et al., 2020a. Efficient coupled multiphase-flow and geomechanics modeling of well performance and stress evolution in shale-gas reservoirs considering dynamic fracture properties. SPE Journal, 25(3):1523-1542. [31]LiuLJ, LiuYZ, YaoJ, et al., 2020b. Mechanistic study of cyclic water injection to enhance oil recovery in tight reservoirs with fracture deformation hysteresis. Fuel, 271:117677. [32]LohrenzJ, BrayBG, ClarkCR, 1964. Calculating viscosities of reservoir fluids from their compositions. Journal of Petroleum Technology, 16(10):1171-1176. [33]MahmoodpourS, SinghM, TuranA, et al., 2022a. Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir. Energy, 247:123511. [34]MahmoodpourS, SinghM, BärK, et al., 2022b. Thermo-hydro-mechanical modeling of an enhanced geothermal system in a fractured reservoir using carbon dioxide as heat transmission fluid-a sensitivity investigation. Energy, 254:124266. [35]MoinfarA, VaraveiA, SepehrnooriK, et al., 2012. Development of a novel and computationally-efficient discrete-fracture model to study IOR processes in naturally fractured reservoirs. SPE Improved Oil Recovery Symposium, p.1-17. [36]NorbeckJH, McClureMW, LoJW, et al., 2016. An embedded fracture modeling framework for simulation of hydraulic fracturing and shear stimulation. Computational Geosciences, 20(1):1-18. [37]PruessK, 1991. TOUGH2: a General-Purpose Numerical Simulator for Multiphase Fluid and Heat Flow. LBL-29400, Lawrence Berkeley Lab, Berkeley, USA. [38]QiuYL, WuCJ, ChenWF, 2020. Local heat transfer enhancement induced by a piezoelectric fan in a channel with axial flow. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(12):1008-1022. [39]RenG, JiangJ, YounisRM, 2016. Fully coupled geomechanics and reservoir simulation for naturally and hydraulically fractured reservoirs. The 50th U.S. Rock Mechanics/Geomechanics Symposium, p.1-12. [40]RyderRT, 1996. Fracture Patterns and Their Origin in the Upper Devonian Antrim Shale Gas Reservoir of the Michigan Basin: a Review. Open-File Report 96-23, U.S. Geological Survey, Reston, USA. [41]ShahM, ShahS, SircarA, 2017. A comprehensive overview on recent developments in refracturing technique for shale gas reservoirs. Journal of Natural Gas Science and Engineering, 46:350-364. [42]SongWH, YaoJ, LiY, et al., 2016. Apparent gas permeability in an organic-rich shale reservoir. Fuel, 181:973-984. [43]StrioloA, ColeDR, 2017. Understanding shale gas: recent progress and remaining challenges. Energy & Fuels, 31(10):10300-10310. [44]SunH, YaoJ, CaoYC, et al., 2017. Characterization of gas transport behaviors in shale gas and tight gas reservoirs by digital rock analysis. International Journal of Heat and Mass Transfer, 104:227-239. [45]UrbanE, OrozcoD, FragosoA, et al., 2016. Refracturing vs. infill drilling–a cost effective approach to enhancing recovery in shale reservoirs. SPE/AAPG/SEG Unconventional Resources Technology Conference, p.2934-2953. [46]VermylenJP, 2011. Geomechanical Studies of the Barnett Shale, Texas, USA. PhD Thesis, Stanford University, California, USA. [47]VersteegHK, MalalasekeraW, 1995. An Introduction to Computational Fluid Dynamics: the Finite Volume Method. Longman Scientific & Technical, New York, USA. [48]WangDY, YaoJ, ChenZX, et al., 2019. Image-based core-scale real gas apparent permeability from pore-scale experimental data in shale reservoirs. Fuel, 254:115596. [49]WebbSW, PruessK, 2003. The use of Fick’s law for modeling trace gas diffusion in porous media. Transport in Porous Media, 51(3):327-341. [50]WuYS, LiJF, DingDY, et al., 2014. A generalized framework model for the simulation of gas production in unconventional gas reservoirs. SPE Journal, 19(5):845-857. [51]XuRN, ZengKC, ZhangCW, et al., 2017. Assessing the feasibility and CO2 storage capacity of CO2 enhanced shale gas recovery using triple-porosity reservoir model. Applied Thermal Engineering, 115:1306-1314. [52]YanX, HuangZQ, YaoJ, et al., 2016. An efficient embedded discrete fracture model based on mimetic finite difference method. Journal of Petroleum Science and Engineering, 145:11-21. [53]YanX, HuangZQ, YaoJ, et al., 2018a. An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media. Computational Mechanics, 62(5):943-962. [54]YanX, HuangZQ, YaoJ, et al., 2018b. An efficient numerical hybrid model for multiphase flow in deformable fractured-shale reservoirs. SPE Journal, 23(4):1412-1437. [55]YanX, HuangZQ, ZhangQ, et al., 2020. Numerical investigation of the effect of partially propped fracture closure on gas production in fractured shale reservoirs. Energies, 13(20):5339. [56]YeX, TonmukayakulP, WeaverJD, et al., 2012. Experiment and simulation study of proppant pack compression. SPE International Symposium and Exhibition on Formation Damage Control, p.1-12. [57]YuW, SepehrnooriK, 2014. Simulation of gas desorption and geomechanics effects for unconventional gas reservoirs. Fuel, 116:455-464. [58]ZengQD, YaoJ, ShaoJF, 2018. Numerical study of hydraulic fracture propagation accounting for rock anisotropy. Journal of Petroleum Science and Engineering, 160:422-432. [59]ZengQD, YaoJ, ShaoJF, 2019. Study of hydraulic fracturing in an anisotropic poroelastic medium via a hybrid EDFM-XFEM approach. Computers and Geotechnics, 105:51-68. [60]ZhangQ, BorjaRI, 2021. Poroelastic coefficients for anisotropic single and double porosity media. Acta Geotechnica, 16(10):3013-3025. [61]ZhangQ, YanX, ShaoJL, 2021. Fluid flow through anisotropic and deformable double porosity media with ultra-low matrix permeability: a continuum framework. Journal of Petroleum Science and Engineering, 200:108349. [62]ZhangQ, YanX, LiZH, 2022. A mathematical framework for multiphase poromechanics in multiple porosity media. Computers and Geotechnics, 146:104728. [63]ZhuGP, KouJS, YaoBW, et al., 2019. Thermodynamically consistent modelling of two-phase flows with moving contact line and soluble surfactants. Journal of Fluid Mechanics, 879:327-359. [64]ZienkiewiczOC, TaylorRL, 2000. The Finite Element Method: Solid Mechanics. Butterworth-Heinemann, Oxford, UK. [65]ZuloagaP, YuW, MiaoJJ, et al., 2017. Performance evaluation of CO2 huff-n-puff and continuous CO2 injection in tight oil reservoirs. Energy, 134:181-192. Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>