CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-03-31
Cited: 0
Clicked: 1523
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0001-6884-2763
Tuo WANG, Feng-shou ZHANG, Pei WANG. Experimental and numerical study of seepage-induced suffusion under K0 stress state[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200198 @article{title="Experimental and numerical study of seepage-induced suffusion under K0 stress state", %0 Journal Article TY - JOUR
K0应力状态下渗流潜蚀试验与数值研究机构:1同济大学,岩土与地下工程教育部重点实验室,中国上海,200092;2同济大学,土木工程学院,地下工程系,中国上海,200092;3香港理工大学,土木与环境工程系,中国香港,999077 目的:目前,潜蚀过程并不能被直接观察到。本研究期望采用透明仪器直接观察潜蚀的演化过程,探讨K0应力状态下间断级配土的潜蚀过程。 创新点:1.研制出一个透明潜蚀仪器,可直接观测间断级配土的潜蚀过程;2.建立数值模型,扩展试验参数,在颗粒尺度上解释潜蚀规律。 方法:1.采用透明的潜蚀仪器,直接观测间断级配土的潜蚀过程,并记录潜蚀质量;2.通过离散元数值模拟的方法,在颗粒尺度上揭示颗粒的迁移规律。 结论:1.随着侵蚀的进行,试样内部形成侵蚀带并逐渐扩大;从力链分析可知,细颗粒在水流作用下逐渐堆积在粗颗粒形成的孔隙中,并被粗颗粒堵塞。2.当侵蚀和阻塞区形成时,流速也逐渐局部化;在侵蚀区,孔隙度增大,流速普遍较快,但在阻塞区,流速较慢。3.参数分析表明,最终潜蚀重量与水力梯度呈正相关关系,且潜蚀重量随K0压力的增大而减小;随着细粉含量的增加,潜蚀重量增加。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AhmadiM, ShireT, MehdizadehA, et al., 2020. DEM modelling to assess internal stability of gap-graded assemblies of spherical particles under various relative densities, fine contents and gap ratios. Computers and Geotechnics, 126:103710. ![]() [2]BendahmaneF, MarotD, AlexisA, 2008. Experimental parametric study of suffusion and backward erosion. Journal of Geotechnical and Geoenvironmental Engineering, 134(1):57-67. ![]() [3]ChangDS, 2012. Internal Erosion and Overtopping Erosion of Earth Dams and Landslide Dams. PhD Thesis, Hong Kong University of Science and Technology, Hong Kong, China. ![]() [4]ChangDS, ZhangLM, 2011. A stress-controlled erosion apparatus for studying internal erosion in soils. Geotechnical Testing Journal, 34(6):GTJ103889. ![]() [5]ChangDS, ZhangLM, 2013. Critical hydraulic gradients of internal erosion under complex stress states. Journal of Geotechnical and Geoenvironmental Engineering, 139(9):1454-1467. ![]() [6]ChenC, ZhangLM, ChangDS, 2016. Stress-strain behavior of granular soils subjected to internal erosion. Journal of Geotechnical and Geoenvironmental Engineering, 142(12):06016014. ![]() [7]ChengK, WangY, YangQ, 2018. A semi-resolved CFD-DEM model for seepage-induced fine particle migration in gap-graded soils. Computers and Geotechnics, 100:30-51. ![]() [8]GolayF, BonelliS, 2011. Numerical modeling of suffusion as an interfacial erosion process. European Journal of Environmental and Civil Engineering, 15(8):1225-1241. ![]() [9]HuZ, ZhangYD, YangZX, 2019. Suffusion-induced deformation and microstructural change of granular soils: a coupled CFD–DEM study. Acta Geotechnica, 14(3):795-814. ![]() [10]HuangZ, BaiYC, XuHJ, et al., 2021. A theoretical model to predict suffusion-induced particle movement in cohesionless soil under seepage flow. European Journal of Soil Science, 72(3):1395-1409. ![]() [11]HunterRP, BowmanET, 2018. Visualisation of seepage-induced suffusion and suffosion within internally erodible granular media. Géotechnique, 68(10):918-930. ![]() [12]Itasca Consulting Group Inc., 2015. PFC3D (Particle Flow Code in 3 Dimensions), Version 5.0. Itasca Consulting Group Inc., Minneapolis, USA. ![]() [13]JiSM, GeJQ, TanDP, 2017. Wall contact effects of particle-wall collision process in a two-phase particle fluid. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 18(12):958-973. ![]() [14]JinZ, LuZ, YangY, 2021. Numerical analysis of column collapse by smoothed particle hydrodynamics with an advanced critical state-based model. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(11):882-893. ![]() [15]KeL, TakahashiA, 2014. Experimental investigations on suffusion characteristics and its mechanical consequences on saturated cohesionless soil. Soils and Foundations, 54(4):713-730. ![]() [16]KeL, TakahashiA, 2015. Drained monotonic responses of suffusional cohesionless soils. Journal of Geotechnical and Geoenvironmental Engineering, 141(8):04015033. ![]() [17]KenneyTC, LauD, 1985. Internal stability of granular filters. Canadian Geotechnical Journal, 22(2):215-225. ![]() [18]LiuQ, ZhaoB, SantamarinaJC, 2019. Particle migration and clogging in porous media: a convergent flow microfluidics study. Journal of Geophysical Research: Solid Earth, 124(9):9495-9504. ![]() [19]LiuYJ, WangLZ, HongY, et al., 2020. A coupled CFD-DEM investigation of suffusion of gap graded soil: coupling effect of confining pressure and fines content. International Journal for Numerical and Analytical Methods in Geomechanics, 44(18):2473-2500. ![]() [20]LuoYL, QiaoL, LiuXX, et al., 2013. Hydro-mechanical experiments on suffusion under long-term large hydraulic heads. Natural Hazards, 65(3):1361-1377. ![]() [21]MarotD, LeVD, GarnierJ, et al., 2012. Study of scale effect in an internal erosion mechanism: centrifuge model and energy analysis. European Journal of Environmental and Civil Engineering, 16(1):1-19. ![]() [22]MoffatR, FanninRJ, 2011. A hydromechanical relation governing internal stability of cohesionless soil. Canadian Geotechnical Journal, 48(3):413-424. ![]() [23]MoffatR, FanninRJ, GarnerSJ, 2011. Spatial and temporal progression of internal erosion in cohesionless soil. Canadian Geotechnical Journal, 48(3):399-412. ![]() [24]NardelliV, CoopMR, AndradeJE, et al., 2017. An experimental investigation of the micromechanics of Eglin sand. Powder Technology, 312:166-174. ![]() [25]RochimA, MarotD, SibilleL, et al., 2017. Effects of hydraulic loading history on suffusion susceptibility of cohesionless soils. Journal of Geotechnical and Geoenvironmental Engineering, 143(7):04017025. ![]() [26]ShireT, O’SullivanC, 2013. Micromechanical assessment of an internal stability criterion. Acta Geotechnica, 8(1):81-90. ![]() [27]ShireT, O’SullivanC, HanleyKJ, et al., 2014. Fabric and effective stress distribution in internally unstable soils. Journal of Geotechnical and Geoenvironmental Engineering, 140(12):04014072. ![]() [28]Silpa-AnanC, HartleyR, 2008. Optimised KD-trees for fast image descriptor matching. IEEE Conference on Computer Vision & Pattern Recognition, p.1-8. ![]() [29]TangY, YaoXY, ChenYN, et al., 2020. Experiment research on physical clogging mechanism in the porous media and its impact on permeability. Granular Matter, 22(2):37. ![]() [30]TaoR, YangMM, LiSQ, 2018. Filtration of micro-particles within multi-fiber arrays by adhesive DEM-CFD simulation. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 19(1):34-44. ![]() [31]WanCF, FellR, 2008. Assessing the potential of internal instability and suffusion in embankment dams and their foundations. Journal of Geotechnical and Geoenvironmental Engineering, 134(3):401-407. ![]() [32]WangP, GeY, WangT, et al., 2022a. CFD-DEM modelling of suffusion in multi-layer soils with different fines contents and impermeable zones. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), in press. ![]() [33]WangP, YinZY, WangZY, 2022b. Micromechanical investigation of particle-size effect of granular materials in biaxial test with the role of particle breakage. Journal of Engineering Mechanics, 148(1):04021133. ![]() [34]WenMJ, WangKH, WuWB, et al., 2021. Dynamic response of bilayered saturated porous media based on fractional thermoelastic theory. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(12):992-1004. ![]() [35]YangJ, YinZY, LaouafaF, et al., 2019. Analysis of suffusion in cohesionless soils with randomly distributed porosity and fines content. Computers and Geotechnics, 111:157-171. ![]() [36]YinZY, JinYF, ZhangX, 2021. Large deformation analysis in geohazards and geotechnics. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(11):851-855. ![]() [37]ZhangFS, LiML, PengM, et al., 2019. Three-dimensional DEM modeling of the stress–strain behavior for the gap-graded soils subjected to internal erosion. Acta Geotechnica, 14(2):487-503. ![]() [38]ZhangFS, WangT, LiuF, et al., 2020. Modeling of fluid-particle interaction by coupling the discrete element method with a dynamic fluid mesh: implications to suffusion in gap-graded soils. Computers and Geotechnics, 124:103617. ![]() [39]ZhangFS, WangT, LiuF, et al., 2022. Hydro-mechanical coupled analysis of near-wellbore fines migration from unconsolidated reservoirs. Acta Geotechnica, 17(8):3535-3551. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>