CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-03-31
Cited: 0
Clicked: 2151
Citations: Bibtex RefMan EndNote GB/T7714
Wei XIONG, Qi-min ZHANG, Jian-feng WANG. Effect of morphological gene mutation and decay on energy dissipation behaviour of granular soils[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200226 @article{title="Effect of morphological gene mutation and decay on energy dissipation behaviour of granular soils", %0 Journal Article TY - JOUR
形貌基因突变与衰减对于颗粒材料能量耗散行为的影响机构:1香港城市大学,建筑与土木工程系,中国香港;2香港城市大学深圳研究院,建筑与土木工程系,中国深圳,518057 目的:本文旨在探讨不同尺度颗粒形貌特征对于砂土应力-应变以及能量耗散行为的影响。 方法:1.通过同步X射线计算断层扫描实验,提取高精度的真实颗粒形貌,并通过三维点云表征;2.通过基于球谐分析的主成分分析方法,构建不同尺度下颗粒形貌的突变与衰减;3.通过离散单元法仿真,模拟不同形貌试件的三轴剪切过程,并进一步讨论不同尺度颗粒形貌对于颗粒材料应力-应变以及能量耗散行为的影响。 结论:1.通过比较较松散和较密实的试件,发现对于较松散试件,颗粒形貌对颗粒材料的初始刚度、应力-应变、体积应变和摩擦能量耗散等响应的影响更为明显;2.对于不同尺度下的颗粒形貌,局部圆度较长径比对颗粒材料宏观响应的影响更大;3.颗粒材料的能量耗散行为由颗粒形貌和初始孔隙率共同决定。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AlikaramiR, AndòE, Gkiousas-KapnisisM, et al., 2015. Strain localisation and grain breakage in sand under shearing at high mean stress: insights from in situ X-ray tomography. Acta Geotechnica, 10(1):15-30. ![]() [2]AltuhafiFN, CoopMR, 2011. Changes to particle characteristics associated with the compression of sands. Géotechnique, 61(6):459-471. ![]() [3]AndradeJE, AvilaCF, HallSA, et al., 2011. Multiscale modeling and characterization of granular matter: from grain kinematics to continuum mechanics. Journal of the Mechanics and Physics of Solids, 59(2):237-250. ![]() [4]AzémaE, RadjaiF, DuboisF, 2013. Packings of irregular polyhedral particles: strength, structure, and effects of angularity. Physical Review E, 87(6):062203. ![]() [5]BaoN, WeiJ, ChenJF, et al., 2020. 2D and 3D discrete num ![]() [6]erical modelling of soil arching. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21:350-365. ![]() [7]ChenRC, DreossiD, ManciniL, et al., 2012. PITRE: software for phase-sensitive X-ray image processing and tomography reconstruction. Journal of Synchrotron Radiation, 19(5):836-845. ![]() [8]ChengZ, WangJF, 2018a. Experimental investigation of inter-particle contact evolution of sheared granular materials using X-ray micro-tomography. Soils and Foundations, 58(6):1492-1510. ![]() [9]ChengZ, WangJF, 2018b. A particle-tracking method for experimental investigation of kinematics of sand particles under triaxial compression. Powder Technology, 328:436-451. ![]() [10]ChengZ, WangJF, CoopMR, et al., 2020a. A miniature triaxial apparatus for investigating the micromechanics of granular soils with in situ X-ray micro-tomography scanning. Frontiers of Structural and Civil Engineering, 14(2):357-373. ![]() [11]ChengZ, ZhouB, WangJF, 2020b. Tracking particles in sands based on particle shape parameters. Advanced Powder Technology, 31(5):2005-2019. ![]() [12]ChoGC, DoddsJ, SantamarinaJC, 2006. Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. Journal of Geotechnical and Geoenvironmental Engineering, 132(5):591-602. ![]() [13]CundallPA, StrackODL, 1979. A discrete numerical model for granular assemblies. Géotechnique, 29(1):47-65. ![]() [14]de BonoJP, McDowellGR, 2014. DEM of triaxial tests on crushable sand. Granular Matter, 16(4):551-562. ![]() [15]de BonoJP, McDowellGR, 2020. The effects of particle shape on the yielding behaviour of crushable sand. Soils and Foundations, 60(2):520-532. ![]() [16]de BonoJP, McDowellGR, WanatowskiD, 2012. Discrete element modelling of a flexible membrane for triaxial testing of granular material at high pressures. Géotechnique Letters, 2(4):199-203. ![]() [17]FazekasS, TörökJ, KertészJ, et al., 2006. Morphologies of three-dimensional shear bands in granular media. Physical Review E, 74(3):031303. ![]() [18]FeiWB, NarsilioGA, 2020. Impact of three-dimensional sphericity and roundness on coordination number. Journal of Geotechnical and Geoenvironmental Engineering, 146(12):06020025. ![]() [19]FonsecaJ, O’SullivanC, CoopMR, et al., 2012. Non-invasive characterization of particle morphology of natural sands. Soils and Foundations, 52(4):712-722. ![]() [20]FonsecaJ, O’SullivanC, CoopMR, et al., 2013. Quantifying the evolution of soil fabric during shearing using directional parameters. Géotechnique, 63(6):487-499. ![]() [21]GongJ, LiuJ, 2017. Effect of aspect ratio on triaxial compression of multi-sphere ellipsoid assemblies simulated using a discrete element method. Particuology, 32:49-62. ![]() [22]GrigoriuM, GarbocziE, KafaliC, 2006. Spherical harmonic-based random fields for aggregates used in concrete. Powder Technology, 166(3):123-138. ![]() [23]GutierrezM, WangJ, YoshimineM, 2009. Modeling of the simple shear deformation of sand: effects of principal stress rotation. Acta Geotechnica, 4(3):193-201. ![]() [24]HallSA, BornertM, DesruesJ, et al., 2010. Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation. Géotechnique, 60(5):315-322. ![]() [25]HasanA, AlshibliKA, 2010. Experimental assessment of 3D particle-to-particle interaction within sheared sand using synchrotron microtomography. Géotechnique, 60(5):369-379. ![]() [26]HuangZY, YangZX, WangZY, 2008. Discrete element modeling of sand behavior in a biaxial shear test. Journal of Zhejiang University-SCIENCE A, 9(9):1176-1183. ![]() [27]IwashitaK, OdaM, 2000. Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technology, 109(1-3):192-205. ![]() [28]JinZ, LuZ, YangY, 2021. Numerical analysis of column collapse by smoothed particle hydrodynamics with an advanced critical state-based model. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22(11):882-893. ![]() [29]KaratzaZ, AndòE, PapanicolopulosSA, et al., 2018. Evolution of deformation and breakage in sand studied using X-ray tomography. Géotechnique, 68(2):107-117. ![]() [30]KawamotoR, AndòE, ViggianiG, et al., 2018. All you need is shape: predicting shear banding in sand with LS-DEM. Journal of the Mechanics and Physics of Solids, 111:375-392. ![]() [31]KuhnMR, SunW, WangQ, 2015. Stress-induced anisotropy in granular materials: fabric, stiffness, and permeability. Acta Geotechnica, 10(4):399-419. ![]() [32]LinX, NgTT, 1997. A three-dimensional discrete element model using arrays of ellipsoids. Géotechnique, 47(2):319-329. ![]() [33]LiuX, GarbocziEJ, GrigoriuM, et al., 2011. Spherical harmonic-based random fields based on real particle 3D data: improved numerical algorithm and quantitative comparison to real particles. Powder Technology, 207(1-3):78-86. ![]() [34]MaedaK, SakaiH, KondoA, et al., 2010. Stress-chain based micromechanics of sand with grain shape effect. Granular Matter, 12(5):499-505. ![]() [35]MollonG, ZhaoJD, 2014. 3D generation of realistic granular samples based on random fields theory and fourier shape descriptors. Computer Methods in Applied Mechanics and Engineering, 279:46-65. ![]() [36]NassauerB, LiedkeT, KunaM, 2013. Polyhedral particles for the discrete element method. Granular Matter, 15(1):85-93. ![]() [37]NgTT, 2009. Particle shape effect on macro- and micro-behaviors of monodisperse ellipsoids. International Journal for Numerical and Analytical Methods in Geomechanics, 33(4):511-527. ![]() [38]NieJY, CaoZJ, LiDQ, et al., 2021. 3D DEM insights into the effect of particle overall regularity on macro and micro mechanical behaviours of dense sands. Computers and Geotechnics, 132:103965. ![]() [39]NieZH, FangCF, GongJ, et al., 2020. DEM study on the effect of roundness on the shear behaviour of granular materials. Computers and Geotechnics, 121:103457. ![]() [40]OtsuN, 1979. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1):62-66. ![]() [41]PeronaP, MalikJ, 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629-639. ![]() [42]QuTM, FengYT, WangY, et al., 2019. Discrete element modelling of flexible membrane boundaries for triaxial tests. Computers and Geotechnics, 115:103154. ![]() [43]QuTM, WangM, FengYT, 2022. Applicability of discrete element method with spherical and clumped particles for constitutive study of granular materials. Journal of Rock Mechanics and Geotechnical Engineering, 14(1):240-251. ![]() [44]RothenburgL, BathurstRJ, 1991. Numerical simulation of idealized granular assemblies with plane elliptical particles. Computers and Geotechnics, 11(4):315-329. ![]() [45]SharmaA, Leib-DayAR, ThakurMM, et al., 2021. Effect of particle morphology on stiffness, strength and volumetric behavior of rounded and angular natural sand. Materials, 14(11):3023. ![]() [46]StroevenP, HeH, StroevenM, 2011. Discrete element modelling approach to assessment of granular properties in concrete. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 12(5):335-344. ![]() [47]SunQ, ZhengJX, 2021. Realistic soil particle generation based on limited morphological information by probability-based spherical harmonics. Computational Particle Mechanics, 8(2):215-235. ![]() [48]ThakurMM, PenumaduD, 2021. Influence of friction and particle morphology on triaxial shearing of granular materials. Journal of Geotechnical and Geoenvironmental Engineering, 147(11):04021118. ![]() [49]ViggianiG, AndòE, TakanoD, et al., 2015. Laboratory X-ray tomography: a valuable experimental tool for revealing processes in soils. Geotechnical Testing Journal, 38(1):61-71. ![]() [50]WangJF, YanHB, 2012. DEM analysis of energy dissipation in crushable soils. Soils and Foundations, 52(4):644-657. ![]() [51]WangX, YinZY, SuD, et al., 2022. A novel approach of random packing generation of complex-shaped 3D particles with controllable sizes and shapes. Acta Geotechnica, 17(2):355-376. ![]() [52]WeiDH, WangJF, NieJY, et al., 2018. Generation of realistic sand particles with fractal nature using an improved spherical harmonic analysis. Computers and Geotechnics, 104:1-12. ![]() [53]WenMJ, WangKH, WuWB, et al., 2021. Dynamic response of bilayered saturated porous media based on fractional thermoelastic theory. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22:992-1004. ![]() [54]WuMM, WangJF, RussellA, et al., 2021. DEM modelling of mini-triaxial test based on one-to-one mapping of sand particles. Géotechnique, 71(8):714-727. ![]() [55]WuZJ, LiZL, HuangWD, et al., 2012. Comparisons of nozzle orifice processing methods using synchrotron X-ray micro-tomography. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 13(3):182-188. ![]() [56]XiaoY, LongLH, Matthew EvansT, et al., 2019. Effect of particle shape on stress-dilatancy responses of medium-dense sands. Journal of Geotechnical and Geoenvironmental Engineering, 145(2):04018105. ![]() [57]XiongW, WangJF, 2021. Gene mutation of particle morphology through spherical harmonic-based principal component analysis. Powder Technology, 386:176-192. ![]() [58]XiongW, WangJF, ChengZ, 2020. A novel multi-scale particle morphology descriptor with the application of SPHERICAL harmonics. Materials, 13(15):3286. ![]() [59]YangJ, LuoXD, 2015. Exploring the relationship between critical state and particle shape for granular materials. Journal of the Mechanics and Physics of Solids, 84:196-213. ![]() [60]YinZY, JinYF, ZhangX, 2021. Large deformation analysis in geohazards and geotechnics. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 22:851-855. ![]() [61]ZhangWC, WangJF, JiangMJ, 2013. DEM-aided discovery of the relationship between energy dissipation and shear band formation considering the effects of particle rolling resistance. Journal of Geotechnical and Geoenvironmental Engineering, 139(9):1512-1527. ![]() [62]ZhaoB, WangJ, CoopMR, et al., 2015. An investigation of single sand particle fracture using X-ray micro-tomography. Géotechnique, 65(8):625-641. ![]() [63]ZhaoBD, WangJF, 2016. 3D quantitative shape analysis on form, roundness, and compactness with μCT. Powder Technology, 291:262-275. ![]() [64]ZhaoBD, WangJF, AndòE, et al., 2020. Investigation of particle breakage under one-dimensional compression of sand using X-ray microtomography. Canadian Geotechnical Journal, 57(5):754-762. ![]() [65]ZhengJ, HryciwRD, 2017. Soil particle size and shape distributions by stereophotography and image analysis. Geotechnical Testing Journal, 40(2):317-328. ![]() [66]ZhouB, WangJ, 2017. Generation of a realistic 3D sand assembly using X-ray micro-computed tomography and spherical harmonic-based principal component analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 41(1):93-109. ![]() [67]ZhouB, HuangRQ, WangHB, et al., 2013. DEM investigation of particle anti-rotation effects on the micromechanical response of granular materials. Granular Matter, 15(3):315-326. ![]() [68]ZhouB, WangJF, ZhaoBD, 2015. Micromorphology characterization and reconstruction of sand particles using micro X-ray tomography and spherical harmonics. Engineering Geology, 184:126-137. ![]() [69]ZhouB, WangJ, WangH, 2018. A novel particle tracking method for granular sands based on spherical harmonic rotational invariants. Géotechnique, 68(12):1116-1123. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>