CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-09-20
Cited: 0
Clicked: 1676
Chenchen ZHANG, Yiren ZANG, Heyuan WANG, Bin MENG, Sheng LI, Jian RUAN. Theoretical and experimental investigation on the efficiency of a novel roller piston pump[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200378 @article{title="Theoretical and experimental investigation on the efficiency of a novel roller piston pump", %0 Journal Article TY - JOUR
新型滚子柱塞泵效率特性的理论与实验研究机构:浙江工业大学,机械工程学院,中国杭州,310023 目的:由于其固有的三大滑动摩擦副,传统轴向柱塞泵在高转速及变转速工况下的机械和容积效率受到制约。如何降低摩擦副的摩擦损失和泄漏损失成为高性能燃油泵设计中首要关注的问题。本文提出一种新型滚子柱塞泵,探讨了其在不同负载压力与转速下的机械效率与容积效率。 创新点:1.提出一种新型滚子柱塞泵,其采用凸轮导轨-滚子式的滚动支撑替代斜盘-滑靴副的滑动副支撑来实现柱塞腔的吸排油,采用轴配流代替原有的配流盘配流,传动轴兼作配流轴以免去配流盘结构,从而极大地简化了轴向柱塞泵的设计;2.建立机械效率与容积效率的数学模型与仿真模型,模拟了滚子柱塞泵在变工况下的运行状态。 方法:1.对滚子泵进行受力分析与泄漏分析,建立滚子泵机械效率与容积效率的数学模型(第3节);2.基于MATLAB与AMESim仿真研究负载压力与转速对机械效率和容积效率的影响(第4节);3.设计与加工滚子泵的原理样机,并在专用的试验台上测得其扭矩与流量,得出其在不同负载压力与转速下的机械效率与容积效率,并将实验结果与仿真结果的比较分析,从而验证滚子泵的高效率(第5节)。 结论:1.新型滚子柱塞泵采用凸轮导轨式滚动支承代替斜盘-滑靴副的滑动副支承,实现活塞腔的吸油和排油。研究结果表明该新结构可以成为航空航天燃油泵的一种潜在解决方案。另外,采用轴配流代替原来的配流盘,以传动轴兼作配流轴,大大简化了轴向柱塞泵的设计。通过结构的对称设计,实现了泵的惯性力平衡,实现了无结构流量脉动,满足了航空液压泵集成度高、压力脉动小的要求。2.理论与实验结果表明,通过结构创新去除配流盘可减少泄漏,大大提高容积效率。滚子泵最高转速可达10000 r/min以上,满足航天燃油泵高速、变速的需要。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]ChaoQ, 2019. Research on Some Key Technologies of High-Speed Rotation for Axial Piston Pumps Used in EHAs. PhD Thesis, Zhejiang University, Hangzhou, China(in Chinese). ![]() [2]ChaoQ, ZhangJH, XuB, et al., 2018. Multi-position measurement of oil film thickness within the slipper bearing in axial piston pumps. Measurement, 122:66-72. ![]() [3]ChaoQ, ZhangJH, XuB, et al., 2019a. A review of high-speed electro-hydrostatic actuator pumps in aerospace applications: challenges and solutions. Journal of Mechanical Design, 141(5):050801. ![]() [4]ChaoQ, ZhangJH, XuB, et al., 2019b. Test rigs and experimental studies of the slipper bearing in axial piston pumps: a review. Measurement, 132:135-149. ![]() [5]ChaoQ, ZhangJH, XuB, et al., 2022. Integrated slipper retainer mechanism to eliminate slipper wear in high-speed axial piston pumps. Frontiers of Mechanical Engineering, 17(1):1. ![]() [6]ChenY, ZhangJH, XuB, et al., 2019. Multi-objective optimization of micron-scale surface textures for the cylinder/valve plate interface in axial piston pumps. Tribology International, 138:316-329. ![]() [7]GuoSR, ChenJH, LuYL, et al., 2020. Hydraulic piston pump in civil aircraft: current status, future directions and critical technologies. Chinese Journal of Aeronautics, 33(1):16-30. ![]() [8]HookeCJ, LiKY, 1989. The lubrication of slippers in axial piston pumps and motors—the effect of tilting couples. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 203(5):343-350. ![]() [9]HuWN, ZhouL, TianYS, et al., 2015. Analysis for the power loss of electro hydrostatic actuator and hydraulic actuator. Proceedings of the IEEE International Conference on Advanced Intelligent Mechatronics, p.613-616. ![]() [10]HuangHH, JinR, LiL, et al., 2018. Improving the energy efficiency of a hydraulic press via variable-speed variable-displacement pump unit. Journal of Dynamic Systems, Measurement, and Control, 140(11):111006. ![]() [11]HuangY, DingC, WangHY, et al., 2020a. Numerical and experimental study on the churning losses of 2D high-speed piston pumps. Engineering Applications of Computational Fluid Mechanics, 14(1):764-777. ![]() [12]HuangY, RuanJ, ZhangCC, et al., 2020b. Research on the mechanical efficiency of high-speed 2D piston pumps. Processes, 8(7):853. ![]() [13]HuangY, RuanJ, ChenY, et al., 2020c. Research on the volumetric efficiency of 2D piston pumps with a balanced force. Energies, 13(18):4796. ![]() [14]IvantysynovaM, LasaarR, 2004. An investigation into micro- and macrogeometric design of piston/cylinder assembly of swash plate machines. International Journal of Fluid Power, 5(1):23-36. ![]() [15]JiaoXX, JingB, HuangYF, et al., 2017. Research on fault diagnosis of airborne fuel pump based on EMD and probabilistic neural networks. Microelectronics Reliability, 75:296-308. ![]() [16]JinR, HuangHH, LiL, et al., 2019. Energy saving strategy of the variable-speed variable-displacement pump unit based on neural network. Procedia CIRP, 80:84-88. ![]() [17]KocE, HookeCJ, LiKY, 1992. Slipper balance in axial piston pumps and motors. Journal of Tribology, 114(4):766-772. ![]() [18]LiHQ, ZhangJ, YanJN, 2016. Effects of partial fuel pump failure on center of gravity control for high-speed aircraft. Proceedings of the IEEE International Conference on Aircraft Utility Systems, p.146-150. ![]() [19]LiMT, FossR, StelsonKA, et al., 2019. Design, dynamic modeling, and experimental validation of a novel alternating flow variable displacement hydraulic pump. IEEE/ASME Transactions on Mechatronics, 24(3):1294-1305. ![]() [20]LuL, XuYP, LiMR, et al., 2022. Analysis of fretting wear behavior of unloading valve of gasoline direct injection high-pressure pump. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(4):314-328. ![]() [21]ManringND, MehtaVS, NelsonBE, et al., 2014. Scaling the speed limitations for axial-piston swash-plate type hydrostatic machines. Journal of Dynamic Systems, Measurement, and Control, 136(3):031004. ![]() [22]PelosiM, IvantysynovaM, 2012. A geometric multigrid solver for the piston–cylinder interface of axial piston machines. Tribology Transactions, 55(2):163-174. ![]() [23]RizzoG, MassarottiGP, BonannoA, et al., 2015. Axial piston pumps slippers with nanocoated surfaces to reduce friction. International Journal of Fluid Power, 16(1):1-10. ![]() [24]RizzoG, BonannoA, MassarottiGP, et al., 2016. Energy efficiency improvement by the application of nanostructured coatings on axial piston pump slippers. Proceedings of the 10th International Fluid Power Conference, p.313-328. ![]() [25]SchuhlerG, JouraniA, BouvierS, et al., 2018. Efficacy of coatings and thermochemical treatments to improve wear resistance of axial piston pumps. Tribology International, 126:376-385. ![]() [26]SinghP, SharmaS, SinhaR, et al., 2015. Review of aircraft fuel system. International Journal of Advance Research and Innovative Ideas in Education, 1(1):1120. ![]() [27]TangHS, YinYB, RenY, et al., 2018. Impact of the thermal effect on the load-carrying capacity of a slipper pair for an aviation axial-piston pump. Chinese Journal of Aeronautics, 31(2):395-409. ![]() [28]WangB, HaoYX, QuanL, et al., 2020. Research on characteristics of electro-hydraulic servo system by sub-chamber independent variable-speed pumps control. Journal of Mechanical Engineering, 56(18):235-243 (in Chinese). ![]() [29]XiaSQ, ZhangJH, YeSG, et al., 2019. A spare support vector machine based fault detection strategy on key lubricating interfaces of axial piston pumps. IEEE Access, 7:178177-178186. ![]() [30]YeSG, ZhangJH, XuB, 2018. Noise reduction of an axial piston pump by valve plate optimization. Chinese Journal of Mechanical Engineering, 31(1):57. ![]() [31]YeSG, ZhangJH, XuB, et al., 2021. A theoretical dynamic model to study the vibration response characteristics of an axial piston pump. Mechanical Systems and Signal Processing, 150:107237. ![]() [32]ZhangJH, ChaoQ, WangQN, et al., 2017. Experimental investigations of the slipper spin in an axial piston pump. Measurement, 102:112-120. ![]() [33]ZhangJH, ChenY, XuB, et al., 2019. Effects of splined shaft bending rigidity on cylinder tilt behaviour for high-speed electro-hydrostatic actuator pumps. Chinese Journal of Aeronautics, 32(2):499-512. ![]() [34]ZhaoJA, FuYL, MaJM, et al., 2021. Review of cylinder block/valve plate interface in axial piston pumps: theoretical models, experimental investigations, and optimal design. Chinese Journal of Aeronautics, 34(1):111-134. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>