CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-09-20
Cited: 0
Clicked: 1790
Citations: Bibtex RefMan EndNote GB/T7714
Shengjie WEI, Yuchao LI, Peng SHEN, Yunmin CHEN. Molecular force mechanism of hydrodynamics in clay nanopores[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200427 @article{title="Molecular force mechanism of hydrodynamics in clay nanopores", %0 Journal Article TY - JOUR
黏土纳米孔内流动的分子力机制机构:浙江大学,建筑工程学院,软弱土与环境土工教育部重点实验室,中国杭州,310058 目的:连续介质方程在描述流体在黏土纳米孔内流动时具有较大偏差。本文旨在通过非平衡动力学模拟揭示纳米尺度下黏土边界效应以及流体内部粘滞作用的力学机制,为更好地控制黏土纳米孔内流动提供新的分析思路。 创新点:1.通过非平衡动力学模拟,计算了黏土纳米孔内流动过程中黏土与阳离子对孔间受限水的作用力大小,并揭示其空间分布规律;2.建立了水分子取向分布、空间形态与其所受作用力间的微细观联系,成功揭示黏土边界效应和流体粘滞作用的力学机制。 方法:1.通过非平衡动力学方法,模拟黏土纳米孔内的流动过程(图1和2),并通过流速、粘滞系数和渗透系数的计算验证模型的正确性(表1);2.通过对孔间受限水的受力分析,计算各项分子间作用力,得到作用力大小和空间分布(图3和4);3.计算水分子平面分布和取向角,建立与所受作用力间的微细观联系,揭示黏土边界效应和流体粘滞作用的力学机制(图5~7)。 结论:1.黏土和阳离子对孔内受限水的合力随时间波动满足高斯分布,且其时均值与施加的驱动力基本相等,以维持流动过程中纯水的动态力学平衡。2.黏土对孔内水分子的作用力类似于简支梁上的支座反力,集中作用在Stern层的水分子上;其中,范德华作用项与水氧原子平面分布相关;由于范德华排斥势垒与定向流动,所以水分子更倾向于在阻力区滞留,而随着水力梯度的增大,阻力区与动力区分布概率差增大,进而产生更大的范德华阻力;库仑作用项则与水分子取向矢量的转动相关;水力梯度的增大诱导水分子取向转动,进而导致承受库仑阻力的水分子数量增多。3.由于相邻水层间存在速度差,所以慢层中的水分子有更高概率停留在中心水分子的上游,进而对中心水分子产生净库仑阻力和净范德华动力,而随着速度梯度的增大,分布概率差异进一步扩大,进而产生了更强的粘滞阻力。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AhmedHR, AbduljauwadSN, 2017. Nano-level constitutive model for expansive clays. Géotechnique, 67(3):187-207. ![]() [2]AlexiadisA, KassinosS, 2008. The density of water in carbon nanotubes. Chemical Engineering Science, 63(8):2047-2056. ![]() [3]AllenMP, TildesleyDJ, 2017. Computer Simulation of Liquids. 2nd Edition. Oxford University Press, Oxford, UK. ![]() [4]BerendsenHJC, PostmaJPM, van GunsterenWF, et al., 1981. Interaction models for water in relation to protein hydration. In: Pullman B (Ed.), Intermolecular Forces. Springer, Dordrecht, the Netherlands, p.331-342. ![]() [5]BoţanA, RotenbergB, MarryV, et al., 2011. Hydrodynamics in clay nanopores. The Journal of Physical Chemistry C, 115(32):16109-16115. ![]() [6]CaoGX, 2017. Computational simulations of pressure-driven nanofluidic behavior. SCIENTIA SINICA Physica, Mechanica & Astronomica, 47(7):070011. ![]() [7]ChenSJ, ChenWQ, OuyangYB, et al., 2019. Transitions between nanomechanical and continuum mechanical contacts: new insights from liquid structure. Nanoscale, 11(47):22954-22963. ![]() [8]CyganRT, LiangJJ, KalinichevAG, 2004. Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. The Journal of Physical Chemistry B, 108(4):1255-1266. ![]() [9]DaivisPJ, ToddBD, 2018. Challenges in nanofluidics—beyond Navier–Stokes at the molecular scale. Processes, 6(9):144. ![]() [10]HanasakiI, NakataniA, 2006a. Flow structure of water in carbon nantubes: Poiseuille type or plug-like? Journal of Chemical Physics, 124(14):144708. ![]() [11]HanasakiI, NakataniA, 2006b. Fluidized piston model for molecular dynamics simulations of hydrodynamic flow. Modelling and Simulation in Materials Science and Engineering, 14(5):S9-S20. ![]() [12]HansenJS, ToddBD, DaivisPJ, 2011. Prediction of fluid velocity slip at solid surfaces. Physical Review E, 84(1):016313. ![]() [13]HessB, 2002. Determining the shear viscosity of model liquids from molecular dynamics simulations. The Journal of Chemical Physics, 116(1):209-217. ![]() [14]HooverWG, HooverCG, 2005. Nonequilibrium molecular dynamics. Condensed Matter Physics, 8(2):247-260. ![]() [15]KannamSK, ToddBD, HansenJS, et al., 2013. How fast does water flow in carbon nanotubes? The Journal of Chemical Physics, 138(9):094701. ![]() [16]KondratyukN, 2019. Contributions of force field interaction forms to Green-Kubo viscosity integral in n-alkane case. The Journal of Chemical Physics, 151(7):074502. ![]() [17]KumarR, SchmidtJR, SkinnerJL, 2007. Hydrogen bonding definitions and dynamics in liquid water. The Journal of Chemical Physics, 126(20):204107. ![]() [18]LiJ, LiaoD, YipS, 1998. Coupling continuum to molecular-dynamics simulation: reflecting particle method and the field estimator. Physical Review E, 57(6):7259-7267. ![]() [19]LiYC, ChenGN, ChenYM, et al., 2017. Design charts for contaminant transport through slurry trench cutoff walls. Journal of Environmental Engineering, 143(9):06017005. ![]() [20]LiuB, QiC, ZhaoXB, et al., 2018. Nanoscale two-phase flow of methane and water in shale inorganic matrix. The Journal of Physical Chemistry C, 122(46):26671-26679. ![]() [21]LoewensteinW, 1954. The distribution of aluminum in the tetrahedra of silicates and aluminates. American Mineralogist, 39(1-2):92-96. ![]() [22]MarryV, RotenbergB, TurqP, 2008. Structure and dynamics of water at a clay surface from molecular dynamics simulation. Physical Chemistry Chemical Physics, 10(32):4802-4813. ![]() [23]MartynaGJ, TobiasDJ, KleinML, 1994. Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5):4177-4189. ![]() [24]MitchellJK, SogaK, 2005. Fundamentals of Soil Behavior. 3rd Edition. Wiley, Hoboken, USA. ![]() [25]PlimptonS, 1995. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1):1-19. ![]() [26]QuirkJP, AylmoreLAG, 1971. Domains and quasi-crystalline regions in clay systems. Soil Science Society of America Journal, 35(4):652-654. ![]() [27]Ramos-AlvaradoB, KumarS, PetersonGP, 2016. Hydrodynamic slip in silicon nanochannels. Physical Review E, 93(3):033117. ![]() [28]RyckaertJP, CiccottiG, BerendsenHJC, 1977. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3):327-341. ![]() [29]SamA, HartkampR, Kumar KannamS, et al., 2021. Fast transport of water in carbon nanotubes: a review of current accomplishments and challenges. Molecular Simulation, 47(10-11):905-924. ![]() [30]SimonninP, MarryV, NoetingerB, et al., 2018. Mineral- and ion-specific effects at clay–water interfaces: structure, diffusion, and hydrodynamics. The Journal of Physical Chemistry C, 122(32):18484-18492. ![]() [31]SkipperNT, ChangFRC, SpositoG, 1995. Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. 1. Methodology. Clays and Clay Minerals, 43(3):285-293. ![]() [32]SmithDE, 1998. Molecular computer simulations of the swelling properties and interlayer structure of cesium montmorillonite. Langmuir, 14(20):5959-5967. https:/doi.org/10.1021/la980015z ![]() [33]StukowskiA, 2010. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18(1):015012. ![]() [34]WangL, DumontRS, DicksonJM, 2012. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure. Journal of Chemical Physics, 137(4):044102. ![]() [35]WasakA, AkkutluIY, 2015. Permeability of organic-rich shale. SPE Journal, 20(6):1384-1396. ![]() [36]WeiSJ, LiYC, ShenP, et al., 2023. Molecular forces of water flow in clay nanopores. The 9th International Congress on Environmental Geotechnics, p.259-268. ![]() [37]XiongH, DevegowdaD, HuangL, 2020. Oil-water transport in clay-hosted nanopores: effects of long range electrostatic forces. AIChE Journal, 66(8):1-23. ![]() [38]YinYM, ZhaoLL, 2020. Effects of salt concentrations and pore surface structure on the water flow through rock nanopores. Acta Physica Sinica, 69(5):054701 (in Chinese). ![]() [39]ZhanSY, SuYL, JinZH, et al., 2020. Molecular insight into the boundary conditions of water flow in clay nanopores. Journal of Molecular Liquids, 311:113292. ![]() [40]ZhuKQ, XuCX, 2009. Viscous Fluid Mechanics. Higher Education Press, Beijing, China(in Chinese). ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>