CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-03-13
Cited: 0
Clicked: 1898
Citations: Bibtex RefMan EndNote GB/T7714
Xiaohui HU, Jiawang CHEN, Hang ZHOU, Ziqiang REN. Development of underwater electric manipulator based on interventional autonomous underwater vehicle (AUV)[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200621 @article{title="Development of underwater electric manipulator based on interventional autonomous underwater vehicle (AUV)", %0 Journal Article TY - JOUR
应用于作业式水下自主潜航器的水下电动机械手研发机构:1浙江大学,海洋学院,中国舟山,316000;2浙江大学海南研究院,中国三亚,572000;3教育部海洋传感技术与装备工程研究中心,中国舟山,316021 目的:1.以水下轻量化水下电动机械臂为研究对象,探索水下电动机械臂和自主水下航行器(AUV)的集成技术,设计一套全新的适用于500m以上水深的水下机械臂。2.提高AUV的现场操作干预能力和自主作业能力,为海底探测取样作业提供更加有效、经济、方便、快速的手段,在海洋资源探测中发挥更大的作用。 创新点:1.以水下轻量化水下电动机械臂为研究对象,探索水下电动机械臂和AUV的集成技术,设计了一款全新的适应AUV搭载的水下电动机械手。2.该水下电动机械手的密封方式借鉴了深海液压系统的工作原理,采用压力补偿的方式提升电动机械手本身的耐压性和防水性,提升了电动机械手的适用水深和水下工作的可靠性。 方法:1.基于机器人运动学与动力学理论,进行仿真验证,并搭建水下电动机械手实验平台。2.进行陆上和水下的实验,完成轨迹的跟踪实验,并对水上水下和仿真实验的数据进行对比分析,得到水下电动机械手的轨迹跟踪精度,以验证该机械手的运行精度。 结论:1.在匀加速/减速过程中,机械手关节的运行更加稳定;在从匀减速到停止的过渡阶段有微量的过冲;在匀速运动过程中,关节角度跟踪不稳定,从波动幅度来看,误差范围约为0.01 rad。2.通过进一步分析机械手致动器的运动轨迹误差可以得出,机械手在空气中的绝对跟踪误差峰值约为18 mm,而在水下约为14 mm;机械手在水下的末端运动精度比在水中高,匀速时产生的振动幅度也比在空气中小得多。3.要提高机械臂系统的性能,需要设计更精确的控制系统;进行流体力学分析,还需要搭载配备视觉系统的AUV,以便在水下环境和实际海洋环境中进行下一步的自主操作实验。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BarbieriL, BrunoF, GalloA, et al., 2018. Design, prototyping and testing of a modular small-sized underwater robotic arm controlled through a master-slave approach. Ocean Engineering, 158:253-262. ![]() [2]EvansJ, RedmondP, PlakasC, et al., 2003. Autonomous docking for intervention-AUVs using sonar and video-based real-time 3D pose estimation. Oceans 2003. Celebrating the Past ... Teaming Toward the Future, p.2201-2210. ![]() [3]EvansJC, KellerKM, SmithJS, et al., 2001. Docking techniques and evaluation trials of the SWIMMER AUV: an autonomous deployment AUV for work-class ROVs. MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings, p.520-528. ![]() [4]FernandezJJ, PratsM, SanzPJ, et al., 2013. Grasping for the seabed: developing a new underwater robot arm for shallow-water intervention. IEEE Robotics & Automation Magazine, 20(4):121-130. ![]() [5]FernandoS, PereraM, 2022. Development of an underwater robotic arm using multibody dynamics approach. Vibroengineering PROCEDIA, 40:120-125. ![]() [6]HanJ, ChungWK, 2008. Coordinated motion control of underwater vehicle-manipulator system with minimizing restoring moments. IEEE/RSJ International Conference on Intelligent Robots and Systems, p.3158-3163. ![]() [7]LeonessaA, 2008. Underwater robots: motion and force control of vehicle-manipulator systems (G. Antonelli; 2006) [book review]. IEEE Control Systems Magazine, 28(5):138-139. ![]() [8]MaraniG, ChoiSK, YuhJ, 2009. Underwater autonomous manipulation for intervention missions AUVs. Ocean Engineering, 36(1):15-23. ![]() [9]PaullL, SaeediS, SetoM, et al., 2014. AUV navigation and localization: a review. IEEE Journal of Oceanic Engineering, 39(1):131-149. ![]() [10]RidaoP, CarrerasM, RibasD, et al., 2015. Intervention AUVs: the next challenge. Annual Reviews in Control, 40:227-241. ![]() [11]RigaudV, Coste-ManiereE, AldonMJ, et al., 1998. UNION: underwater intelligent operation and navigation. IEEE Robotics & Automation Magazine, 5(1):25-35. ![]() [12]SekkatH, TiganiS, SaadaneR, et al., 2021. Vision-based robotic arm control algorithm using deep reinforcement learning for autonomous objects grasping. Applied Sciences, 11(17):7917. ![]() [13]SimettiE, CasalinoG, 2017. Manipulation and transportation with cooperative underwater vehicle manipulator systems. IEEE Journal of Oceanic Engineering, 42(4):782-799. ![]() [14]SimettiE, CasalinoG, TorelliS, et al., 2014. Floating underwater manipulation: developed control methodology and experimental validation within the trident project. Journal of Field Robotics, 31(3):364-385. ![]() [15]SimettiE, WanderlinghF, TorelliS, et al., 2018. Autonomous underwater intervention: experimental results of the maris project. IEEE Journal of Oceanic Engineering, 43(3):620-639. ![]() [16]SpennebergD, AlbiezJ, KirchnerF, et al., 2007. C-manipulator: an autonomous dual manipulator project for underwater inspection and maintenance. Proceedings of the 26th International Conference on Offshore Mechanics and Arctic Engineering, p.437-443. ![]() [17]TarnTJ, ShoultsGA, YangSP, 1996. A dynamic model of an underwater vehicle with a robotic manipulator using Kane’s method. Autonomous Robots, 3(2):269-283. ![]() [18]YouakimD, CieslakP, DornbushA, et al., 2020. Multirepresentation, multiheuristic A* search-based motion planning for a free-floating underwater vehicle-manipulator system in unknown environment. Journal of Field Robotics, 37(6):925-950. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>