CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-07-20
Cited: 0
Clicked: 1542
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0002-0612-9062
https://orcid.org/0000-0002-9577-3828
Xinghong YE, Yang YANG, Pengcheng JIAO, Zhiguo HE, Lingwei LI. Underwater minirobots actuated by hybrid driving method[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300056 @article{title="Underwater minirobots actuated by hybrid driving method", %0 Journal Article TY - JOUR
基于混合驱动技术的水下小型机器人机构:1浙江大学,海洋学院,港口海岸与近海工程研究所,中国舟山,316021;2浙江大学,海洋感知技术与装备教育部工程研究中心,中国舟山,316021;3新加坡国立大学,生物医学工程系,新加坡,119077;4浙江大学,海洋岩土工程与材料浙江省重点实验室,中国舟山,316021 目的:水下机器人运动时会受到水下环境中局部水流方向和流速的无规则变化等随机因素的干扰,并且其在水中的运动过程本身是一个强耦合的非线性系统,因此对水下机器人的动力驱动性能提出了较高的要求。本文旨在探索一种水下混合驱动技术,即将化学放能反应软体驱动器与螺旋桨推进器耦合,提升水下机器人动力驱动性能,以实现快速、灵活且可靠的水下运动表现。 创新点:1.提出了一种水下混合驱动技术,即将化学放能反应驱动(柔性)与螺旋桨驱动(刚性)相结合,且所提出的由刚性-柔性驱动协同运作的混合驱动技术能够结合两种驱动方式的优势特点,完成其中任一单一驱动方式无法实现的水下运动表现;2.建立了混合驱动水下小型机器人运动过程的数值模拟和机理分析模型,成功模拟了混合驱动机器人水下运动全过程,并定量研究了混合驱动技术的驱动性能和运动表现。 方法:1.通过实验研究,完成混合驱动水下小型机器人的设计制造及运动测试(图1~8);2.建立运动过程的数值模拟模型,定量研究混合驱动水下小型机器人的动力学表现(图9);3.建立运动过程的理论推导模型(公式(1)~(8)),揭示混合驱动水下小型机器人的驱动及运动过程的力学原理(图10),并对比验证实验、数模和理论结果,验证所提方法的可行性和有效性(图11)。 结论:1.混合驱动水下小型机器人能实现瞬时弹射,然后保持上升、转向或悬停于某一位置,具有优异的快速响应驱动能力且能满足水下运动多自由度要求;2.与现有混合驱动技术研究相比,所报道的混合驱动技术具有更强的运行可靠性和快速响应能力;3.化学放能反应驱动的极高驱动加速度,能够帮助水下机器人在面临被地形卡死或被水生植物缠绕等复杂情况时成功摆脱,或实现水下瞬间启动和制动、瞬间转向和避障等;4.螺旋桨推进驱动的机动性和持续性能够帮助机器人在水下稳定作业,实现水下监测等潜在应用。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AdamSAA, ZhouJP, ZhangYH, 2017. Modeling and simulation of 5DOF robot manipulator and trajectory using MATLAB and CATIA. Proceedings of the 3rd International Conference on Control, Automation and Robotics, p.36-40. ![]() [2]AlbiezJ, JoyeuxS, GaudigC, et al., 2015. FlatFish‒a compact subsea-resident inspection AUV. OCEANS-MTS/IEEE Washington, p.1-8. ![]() [3]AnRC, GuoSX, GuSX, et al., 2019. Improvement and evaluation for the stability of mobile spherical underwater robots (SUR III). IEEE International Conference on Mechatronics and Automation, p.2512-2517. ![]() [4]AntonelliG, CaccavaleF, ChiaveriniS, 2004. Adaptive tracking control of underwater vehicle-manipulator systems based on the virtual decomposition approach. IEEE Transactions on Robotics and Automation, 20(3):594-602. ![]() [5]BanerjeeH, SuhailM, RenHL, 2018. Hydrogel actuators and sensors for biomedical soft robots: brief overview with impending challenges. Biomimetics, 3(3):15. ![]() [6]ChenGM, LiuA, HuJH, et al., 2020. Attitude and altitude control of unmanned aerial-underwater vehicle based on incremental nonlinear dynamic inversion. IEEE Access, 8:156129-156138. ![]() [7]ChenYH, WanF, WuT, et al., 2018. Soft-rigid interaction mechanism towards a lobster-inspired hybrid actuator. Journal of Micromechanics and Microengineering, 28(1):014007. ![]() [8]ChengY, HuangC, YangD, et al., 2018. Bilayer hydrogel mixed composites that respond to multiple stimuli for environmental sensing and underwater actuation. Journal of Materials Chemistry B, 6(48):8170-8179. ![]() [9]da CunhaMP, DebijeMG, SchenningAPHJ, 2020. Bioinspired light-driven soft robots based on liquid crystal polymers. Chemical Society Reviews, 49(18):6568-6578. ![]() [10]DasB, SubudhiB, PatiBB, 2016. Co-operative control of a team of autonomous underwater vehicles in an obstacle-rich environment. Journal of Marine Engineering & Technology, 15(3):135-151. ![]() [11]DinmohammadiF, FlynnD, BaileyC, et al., 2019. Predicting damage and life expectancy of subsea power cables in offshore renewable energy applications. IEEE Access, 7:54658-54669. ![]() [12]GuSX, GuoSX, ZhengL, 2020. A highly stable and efficient spherical underwater robot with hybrid propulsion devices. Autonomous Robots, 44(5):759-771. ![]() [13]HeZG, YangY, JiaoPC, et al., 2023. Copebot: underwater soft robot with copepod-like locomotion. Soft Robotics, 10(2):314-325. ![]() [14]IscarE, BarbalataC, GoumasN, et al., 2018. Towards low cost, deep water AUV optical mapping. OCEANS MTS/IEEE Charleston, p.1-6. ![]() [15]JiaoPC, YeXH, ZhangCJ, et al., 2023. Vision-based real-time marine and offshore structural health monitoring system using underwater robots. Computer-Aided Civil and Infrastructure Engineering, in press. ![]() [16]KadiyamJ, MohanS, 2019. Conceptual design of a hybrid propulsion underwater robotic vehicle with different propulsion systems for ocean observations. Ocean Engineering, 182:112-125. ![]() [17]KimNH, KimJM, KhatibO, et al., 2017. Design optimization of hybrid actuation combining macro-mini actuators. International Journal of Precision Engineering and Manufacturing, 18(4):519-527. ![]() [18]LaschiC, MazzolaiB, CianchettiM, 2016. Soft robotics: technologies and systems pushing the boundaries of robot abilities. Science Robotics, 1(1):eaah3690. ![]() [19]LeeC, KimM, KimYJ, et al., 2017. Soft robot review. International Journal of Control, Automation and Systems, 15(1):3-15. ![]() [20]LeeH, XiaCG, FangNX, 2010. First jump of microgel; actuation speed enhancement by elastic instability. Soft Matter, 6(18):4342-4345. ![]() [21]LiGR, ChenXP, ZhouFH, et al., 2021. Self-powered soft robot in the Mariana Trench. Nature, 591(7848):66-71. ![]() [22]LiH, GoG, KoSY, et al., 2016. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Materials and Structures, 25(2):027001. ![]() [23]LiTF, LiGR, LiangYM, et al., 2017. Fast-moving soft electronic fish. Science Advances, 3(4):e1602045. ![]() [24]LiWB, ZhangWM, ZouHX, et al., 2018. A fast rolling soft robot driven by dielectric elastomer. IEEE/ASME Transactions on Mechatronics, 23(4):1630-1640. ![]() [25]LiX, ZhuDQ, QianYA, 2014. A survey on formation control algorithms for multi-AUV system. Unmanned Systems, 2(4):351-359. ![]() [26]McCoulD, RossetS, BesseN, et al., 2017. Multifunctional shape memory electrodes for dielectric elastomer actuators enabling high holding force and low-voltage multisegment addressing. Smart Materials and Structures, 26(2):025015. ![]() [27]Mohd SaidM, YunasJ, BaisB, et al., 2017. The design, fabrication, and testing of an electromagnetic micropump with a matrix-patterned magnetic polymer composite actuator membrane. Micromachines, 9(1):13. ![]() [28]NetoEC, SáRC, HolandaGC, et al., 2014. Autonomous underwater vehicle to inspect hydroelectric dams. International Journal of Computer Applications, 101(11):1-11. ![]() [29]QiW, AlivertiA, 2020. A multimodal wearable system for continuous and real-time breathing pattern monitoring during daily activity. IEEE Journal of Biomedical and Health Informatics, 24(8):2199-2207. ![]() [30]QiW, OvurSE, LiZJ, et al., 2021. Multi-sensor guided hand gesture recognition for a teleoperated robot using a recurrent neural network. IEEE Robotics and Automation Letters, 6(3):6039-6045. ![]() [31]RusD, TolleyMT, 2015. Design, fabrication and control of soft robots. Nature, 521(7553):467-475. ![]() [32]SadeghzadehA, AsuaE, FeuchtwangerJ, et al., 2012. Ferromagnetic shape memory alloy actuator enabled for nanometric position control using hysteresis compensation. Sensors and Actuators A: Physical, 182:122-129. ![]() [33]SahooA, DwivedySK, RobiPS, 2019. Advancements in the field of autonomous underwater vehicle. Ocean Engineering, 181:145-160. ![]() [34]SchmidtAM, 2006. Electromagnetic activation of shape memory polymer networks containing magnetic nanoparticles. Macromolecular Rapid Communications, 27(14):1168-1172. ![]() [35]ShinD, SardellittiI, KhatibO, 2008. A hybrid actuation approach for human-friendly robot design. IEEE International Conference on Robotics and Automation, p.1747-1752. ![]() [36]SongSH, KimMS, RodrigueH, et al., 2016. Turtle mimetic soft robot with two swimming gaits. Bioinspiration & Biomimetics, 11(3):036010. ![]() [37]SongY, HeB, LiuP, 2021. Real-time object detection for AUVs using self-cascaded convolutional neural networks. IEEE Journal of Oceanic Engineering, 46(1):56-67. ![]() [38]StokesAA, ShepherdRF, MorinSA, et al., 2014. A hybrid combining hard and soft robots. Soft Robotics, 1(1):70-74. ![]() [39]TolleyMT, ShepherdRF, MosadeghB, et al., 2014a. A resilient, untethered soft robot. Soft Robotics, 1(3):213-223. ![]() [40]TolleyMT, ShepherdRF, KarpelsonM, et al., 2014b. An untethered jumping soft robot. IEEE/RSJ International Conference on Intelligent Robots and Systems, p.561-566. ![]() [41]ToneT, SuzukiK, 2018. An automated liquid manipulation by using a ferrofluid-based robotic sheet. IEEE Robotics and Automation Letters, 3(4):2814-2821. ![]() [42]WangHP, YangY, LinGZ, et al., 2021. Untethered, high-speed soft jumpers enabled by combustion for motions through multiphase environments. Smart Materials and Structures, 30(1):015035. ![]() [43]WangHP, YangY, YeXH, et al., 2023. Combustion-enabled underwater vehicles (CUVs) in dynamic fluid environment. Journal of Field Robotics, in press. ![]() [44]XinB, LuoXH, ShiZC, et al., 2013. A vectored water jet propulsion method for autonomous underwater vehicles. Ocean Engineering, 74:133-140. ![]() [45]YangY, HouBZ, ChenJY, et al., 2020. High-speed soft actuators based on combustion-enabled transient driving method (TDM). Extreme Mechanics Letters, 37:100731. ![]() [46]YangY, HeZG, LinGZ, et al., 2022. Large deformation mechanics of the thrust performances generated by combustion-enabled soft actuators. International Journal of Mechanical Sciences, 229:107513. ![]() [47]YaoP, ZhaoSQ, 2018. Three-dimensional path planning for AUV based on interfered fluid dynamical system under ocean current (June 2018). IEEE Access, 6:42904-42916. ![]() [48]YueCF, GuoSX, LiMX, 2013. ANSYS FLUENT-based modeling and hydrodynamic analysis for a spherical underwater robot. IEEE International Conference on Mechatronics and Automation, p.1577-1581. ![]() [49]ZhangBY, FanYW, YangPH, et al., 2019. Worm-like soft robot for complicated tubular environments. Soft Robotics, 6(3):399-413. ![]() [50]ZhangLC, HuangQ, CaiKJ, et al., 2020. A wearable soft knee exoskeleton using vacuum-actuated rotary actuator. IEEE Access, 8:61311-61326. ![]() [51]ZhangSW, LiangX, XuLC, et al., 2013. Initial development of a novel amphibious robot with transformable fin-leg composite propulsion mechanisms. Journal of Bionic Engineering, 10(4):434-445. ![]() [52]ZhangTS, YangL, YangX, et al., 2021. Millimeter-scale soft continuum robots for large-angle and high-precision manipulation by hybrid actuation. Advanced Intelligent Systems, 3(2):2000189. ![]() [53]ZhouF, GuLY, LuoGS, et al., 2013. Development of a hydraulic propulsion system controlled by proportional pressure valves for the 4500m work-class ROV. OCEANS-San Diego, p.1-6. ![]() [54]ZiB, YinGC, ZhangD, 2016. Design and optimization of a hybrid-driven waist rehabilitation robot. Sensors, 16(12):2121. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>