CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-03-13
Cited: 0
Clicked: 1676
Citations: Bibtex RefMan EndNote GB/T7714
Junyuan ZHENG, Caiyou ZHAO, Duojia SHI, Ping WANG, Jian WANG, Bolong JIANG, Xi SHENG. A method for support stiffness failure identification in a steel spring floating slab track of urban railway: a case study in China[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300085 @article{title="A method for support stiffness failure identification in a steel spring floating slab track of urban railway: a case study in China", %0 Journal Article TY - JOUR
城市轨道交通钢弹簧浮置板轨道支承刚度失效识别方法:一项中国的案例研究机构:1西南交通大学,高速铁路线路工程教育部重点实验室,中国成都,610031;2西南交通大学,土木工程学院,中国成都,610031;3青岛零一动测数据科技有限公司,中国青岛,266000;4中国铁路设计集团有限公司,城市轨道交通数字化建设与测评技术国家工程研究中心,中国天津,300308;5深圳大学,城市智慧交通与安全运维研究院,中国深圳,518060 目的:在列车往复动力作用和复杂环境因素耦合作用下,常出现诸如钢弹簧隔振器断裂、基底不均匀沉降诱发吊空等隔振器支承刚度失效的问题。本文提出一种钢弹簧浮置板轨道支承刚度失效的方法,能及时识别失效数量、失效程度、失效位置,以避免刚度失效引起的轨道结构劣化和行车安全威胁。 创新点:1.分析隔振器支承刚度失效对浮置板轨道系统各动力指标的影响,并构建一套浮置板轨道钢弹簧失效识别方法;2.结合具有噪声的基于密度的聚类方法(DBSCAN)算法和统计分析构建一套浮置板轨道支承刚度智能监测系统,并应用于中国南部某线路。 方法:1.通过动力响应敏感性分析,得出浮置板自振频率、动位移、转角对支承刚度失效的敏感性较高(图5和6);2.通过分析多种刚度失效的情况,得出敏感性指标和支承刚度失效的关系(表3和4,图8);3.基于上述成果,构建智能监测系统并应用到现场,验证方法的有效性(图13和15)。 结论:1.动力学模型的敏感性分析表明,列车荷载下的浮置板一阶垂向自振频率、最大垂向动位移、转角有效值易受刚度失效影响。2.浮置板的一阶垂向频率主要跟失效数量有关;浮置板最大垂向动位移与失效高度具有较好的线性关系;浮置板转角之间的大小关系对失效位置很敏感。3.以上述方法为理论基础构建浮置板轨道支承刚度智能监测系统,成功识别出钢弹簧失效。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AnkrahAA, KimothoJK, MuvengeiOM, 2020. Fusion of model-based and data driven based fault diagnostic methods for railway vehicle suspension. Journal of Intelligent Learning Systems and Applications, 12(3):51-81. ![]() [2]AuerschL, 2017. Static and dynamic behaviours of isolated or unisolated ballast tracks using a fast wavenumber domain method. Archive of Applied Mechanics, 87(3):555-574. ![]() [3]BashirS, AkhtarN, 2022. Development of low-frequency mass spring system for underground high-speed railways. Journal of Vibration Engineering & Technologies, 10(2):559-579. ![]() [4]BerthaM, GolinvalJC, 2017. Identification of non-stationary dynamical systems using multivariate ARMA models. Mechanical Systems and Signal Processing, 88:166-179. ![]() [5]ChandranP, ThieryF, OdeliusJ, et al., 2022. Unsupervised machine learning for missing clamp detection from an in-service train using differential eddy current sensor. Sustainability, 14(2):1035. ![]() [6]CollierM, 2003. A micro-AGV for flexible manufacturing in small enterprises. Integrated Manufacturing Systems, 14(5):442-448. ![]() [7]CongJL, GaoMY, WangY, et al., 2020. Subway rail transit monitoring by built-in sensor platform of smartphone. Frontiers of Information Technology & Electronic Engineering, 21(8):1226-1238. ![]() [8]CuiXL, ChenGX, YangHG, et al., 2016. Study on rail corrugation of a metro tangential track with Cologne-egg type fasteners. Vehicle System Dynamics, 54(3):353-369. ![]() [9]DerschMS, KhachaturianC, EdwardsJR, 2021. Methods to mitigate railway premium fastening system spike fatigue failures using finite element analysis. Engineering Failure Analysis, 121:105160. ![]() [10]DilenaM, LimongelliMP, MorassiA, 2015. Damage localization in bridges via the FRF interpolation method. Mechanical Systems and Signal Processing, 52-53:162-180. ![]() [11]GomesGF, GiovaniRS, 2022. An efficient two-step damage identification method using sunflower optimization algorithm and mode shape curvature (MSDBI–SFO). Engineering with Computers, 38(2):1711-1730. ![]() [12]HongN, LiLS, YaoWR, et al., 2020. High-speed rail suspension system health monitoring using multi-location vibration data. IEEE Transactions on Intelligent Transportation Systems, 21(7):2943-2955. ![]() [13]JamesIII GH, CarneTG, LauferJP, 1995. The natural excitation technique (NExT) for modal parameter extraction from operating structures. Modal Analysis: The International Journal of Analytical and Experimental Modal Analysis, 10(4):260-277. ![]() [14]LamHF, WongMT, YangYB, 2012. A feasibility study on railway ballast damage detection utilizing measured vibration of in situ concrete sleeper. Engineering Structures, 45:284-298. ![]() [15]LiSS, 2020. An improved DBSCAN algorithm based on the neighbor similarity and fast nearest neighbor query. IEEE Access, 8:47468-47476. ![]() [16]LiZW, LiuXZ, LuHY, et al., 2020. Surface crack detection in precasted slab track in high-speed rail via infrared thermography. Materials, 13(21):4837. ![]() [17]LovedayPW, LongCS, RamatloDA, 2020. Ultrasonic guided wave monitoring of an operational rail track. Structural Health Monitoring, 19(6):1666-1684. ![]() [18]NelsonJT, WatryDL, AmatoMA, et al., 2018. Sound transit prototype high performance low frequency floating slab testing and evaluation. In: Anderson D, Gautier PE, Iida M, et al. (Eds.), Noise and Vibration Mitigation for Rail Transportation Systems. Springer, Heidelberg, Germany, p.607-618. ![]() [19]RajaramS, NelsonJT, 2019. High-performance floating slab track: design and construction improvements based on lessons learned from prototype slabs. Transportation Research Record: Journal of the Transportation Research Board, 2673(1):300-309. ![]() [20]RamosA, CorreiaAG, CalçadaR, et al., 2021. Influence of track foundation on the performance of ballast and concrete slab tracks under cyclic loading: physical modelling and numerical model calibration. Construction and Building Materials, 277:122245. ![]() [21]RioG, SoiveA, GrolleauV, 2005. Comparative study of numerical explicit time integration algorithms. Advances in Engineering Software, 36(4):252-265. ![]() [22]ShenZY, HedrickJK, ElkinsJA, 1983. A comparison of alternative creep force models for rail vehicle dynamic analysis. Vehicle System Dynamics, 12(1-3):79-83. ![]() [23]SitharamTG, SebastianR, FazilF, 2018. Vibration isolation of buildings housed with sensitive equipment using open trenches–case study and numerical simulations. Soil Dynamics and Earthquake Engineering, 115:344-351. ![]() [24]TalbotJP, 2016. Base-isolated buildings: towards performance-based design. Proceedings of the Institution of Civil Engineers-Structures and Buildings, 169(8):574-582. ![]() [25]TamagawaS, 2021. Determination of load test conditions for rail fastenings of a floating slab track. International Journal of Computational Methods and Experimental Measurements, 9(1):14-27. ![]() [26]VandiverJK, DunwoodyAB, CampbellRB, et al., 1982. A mathematical basis for the random decrement vibration signature analysis technique. Journal of Mechanical Design, 104(2):307-313. ![]() [27]WangL, ZhaoYN, SangT, et al., 2022. Ultra-low frequency vibration control of urban rail transit: the general quasi-zero-stiffness vibration isolator. Vehicle System Dynamics, 60(5):1788-1805. ![]() [28]WickramasingheWR, ThambiratnamDP, ChanTHT, 2020. Damage detection in a suspension bridge using modal flexibility method. Engineering Failure Analysis, 107:104194. ![]() [29]WilsonGP, SaurenmanHJ, NelsonJT, 1983. Control of ground-borne noise and vibration. Journal of Sound and Vibration, 87(2):339-350. ![]() [30]XuFZ, SongXL, YangJJ, 2020. Influence of steel spring failure of floating slab track on vibration characteristics of infrastructure. In: Tutumluer E, Chen XB, Xiao YJ (Eds.), Advances in Environmental Vibration and Transportation Geodynamics. Springer, Singapore, p.987-998. ![]() [31]YuP, ManaloA, FerdousW, et al., 2021. Failure analysis and the effect of material properties on the screw pull-out behaviour of polymer composite sleeper materials. Engineering Failure Analysis, 128:105577. ![]() [32]YuanXC, ZhuSY, XuL, et al., 2020. Investigation of the vibration isolation performance of floating slab track with rubber bearings using a stochastic fractional derivative model. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 234(9):992-1004. ![]() [33]ZhaoCY, LiuDY, ZhangXM, et al., 2019. Influence of vibration isolator failure on vehicle operation performance and floating slab track structure vibration reduction effectiveness. Shock and Vibration, 2019:8385310. ![]() [34]ZhaoCY, ZhengJY, SangT, et al., 2021. Computational analysis of phononic crystal vibration isolators via FEM coupled with the acoustic black hole effect to attenuate railway-induced vibration. Construction and Building Materials, 283:122802. ![]() [35]ZhuSY, ZhangQL, ZhaiWM, et al., 2021. Sensor deploying for damage identification of vibration isolator in floating-slab track using deep residual network. Measurement, 183:109801. ![]() [36]ZouJH, DuTF, ChenW, et al., 2022. Experimental study of concrete floating slab municipal road with steel spring isolators under vehicle loads. Construction and Building Materials, 315:125686. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>