CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-03-13
Cited: 0
Clicked: 1289
Citations: Bibtex RefMan EndNote GB/T7714
Wucheng XU, Xiaoqing ZHENG, Xuanhe ZHANG, Zhejie LAI, Yanbin SHEN. Non-uniform thermal behavior of single-layer spherical reticulated shell structures considering time-variant environmental factors: analysis and design[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300143 @article{title="Non-uniform thermal behavior of single-layer spherical reticulated shell structures considering time-variant environmental factors: analysis and design", %0 Journal Article TY - JOUR
考虑时变环境因素的单层球面网壳结构的非均匀热行为:分析与设计机构:1浙江大学,建筑工程学院,中国杭州,310058;2浙江大学,平衡建筑研究中心,中国杭州,310028;3浙江大学,长三角智慧绿洲创新中心,中国嘉兴,314100;4浙江大学,浙江省空间结构重点实验室,中国杭州,310058 目的:由于多环境因素的动态耦合作用,单层球面网壳的温度变化具有强时变性和显著的非均匀特征。然而,传统的设计观念将结构的温度变化等效为气温的均匀升降,这可能导致潜在的安全隐患。通过数值模拟、实验研究和理论推导,本文旨在分析单层球面网壳温度的时变规律和分布模式,研究非均匀热效应及其影响因素,并针对该类结构提供非均匀热荷载的设计方法。 创新点:1. 根据真实热边界条件,模拟单层球面网壳的长期温度变化并剖析其时变规律和分布模式;2. 基于理论推导、数值和实验验证,提出单层球面网壳非均匀热荷载的设计方法;3. 对比结构均匀与非均匀热效应,分析影响热效应的施工因素。 方法:1. 通过仿真计算,运用真实热边界条件模拟单层球面网壳的长期温度变化,分析温度场的时变规律与分布模式;2. 通过理论推导,构建单层球面网壳非均匀热荷载的设计方法,并通过现场试验和数值模拟验证方法的有效性;3. 通过应用热荷载设计方法,研究结构的热效应及其影响因素。 结论:1. 单层球面网壳温度场具有强时变性和非均匀性特征,不均匀程度取决于热边界条件,分布模式取决于太阳与结构之间的位置关系;2. 运用理论推导完成温度场的简化计算,实现非均匀热荷载的设计,并通过实验和模拟对方法的有效性进行验证;3. 单层球面网壳的非均匀热效应显著强于均匀热效应,施工合拢时间是决定结构热效应的关键因素,合理安排合拢时间可以有效降低结构的热应力和变形。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]ChenDS, QianHL, WangHJ, et al., 2017a. Non-uniform temperature field measurement and simulation of a radio telescope’s main reflector under solar radiation. Applied Thermal Engineering, 111:1330-1341. ![]() [2]ChenDS, WangHJ, QianHL, et al., 2017b. Experimental and numerical investigation of temperature effects on steel members due to solar radiation. Applied Thermal Engineering, 127:696-704. ![]() [3]ChenDS, XuWC, QianHL, et al., 2020. Effects of non-uniform temperature on closure construction of spatial truss structure. Journal of Building Engineering, 32:101532. ![]() [4]ChenDS, XuWC, QianHL, et al., 2021. Thermal behavior of beam string structure: experimental study and numerical analysis. Journal of Building Engineering, 40:102724. ![]() [5]DengXS, TangZA, 2011. Moving surface spline interpolation based on Green’s function. Mathematical Geosciences, 43(6):663-680. ![]() [6]FanF, JinXF, ShenSZ, 2009. Effect of non-uniform solar temperature field on cable-net structure of reflector of large radio telescope-FAST. Advances in Structural Engineering, 12(4):503-512. ![]() [7]GMAO (Global Modeling and Assimilation Office), 2015. MERRA-2 inst1_2d_asm_Nx: 2d, 1-Hourly, Instantaneous, Single-Level, Assimilation, Single-Level Diagnostics V5.12.4(M2I1NXASM). GMAO. https://disc.gsfc.nasa.gov/datasets/M2I1NXASM_5.12.4/summary ![]() [8]GreveA, BremerM, 2010. Thermal Design and Thermal Behaviour of Radio Telescopes and Their Enclosures. Springer, Berlin, Germany, p.173-261. ![]() [9]GreveA, KarcherHJ, 2009. Performance improvement of a flexible telescope through metrology and active control. Proceedings of the IEEE, 97(8):1412-1420. ![]() [10]HottelHC, 1976. A simple model for estimating the transmittance of direct solar radiation through clear atmospheres. Solar Energy, 18(2):129-134. ![]() [11]KimSH, ParkSJ, WuJX, et al., 2015. Temperature variation in steel box girders of cable-stayed bridges during construction. Journal of Constructional Steel Research, 112:80-92. ![]() [12]LiuHB, ChenZH, 2016. Non-Uniform Temperature Effect of Solar Radiation on Long-Span Structures. Science Press, Beijing, China, p.34-127 (in Chinese). ![]() [13]LiuHB, ChenZH, ZhouT, 2012a. Numerical and experimental investigation on the temperature distribution of steel tubes under solar radiation. Structural Engineering and Mechanics, 43(6):725-737. ![]() [14]LiuHB, ChenZH, ZhouT, 2012b. Theoretical and experimental study on the temperature distribution of H-shaped steel members under solar radiation. Applied Thermal Engineering, 37:329-335. ![]() [15]LiuHB, ChenZH, HanQH, et al., 2014. Study on the thermal behavior of aluminum reticulated shell structures considering solar radiation. Thin-Walled Structures, 85:15-24. ![]() [16]LiuHB, LiaoXW, ChenZH, et al., 2015. Thermal behavior of spatial structures under solar irradiation. Applied Thermal Engineering, 87:328-335. ![]() [17]MOHURD (Ministry of Housing and Urban-Rural Development of the People’s Republic of China), 2010. Technical Specification for Space Frame Structures, JGJ 7–2010. National Standards of the People’s Republic of China(in Chinese). ![]() [18]MOHURD (Ministry of Housing and Urban-Rural Development of the People’s Republic of China), 2012. Load Code for the Design of Building Structures, GB 50009–2012. National Standards of the People’s Republic of China(in Chinese). ![]() [19]QianHL, ChenDS, FanF, et al., 2016. Evaluation of solar temperature field under different wind speeds for Shanghai 65 m radio telescope. International Journal of Steel Structures, 16(2):383-393. ![]() [20]XiaY, ChenB, ZhouXQ, et al., 2013. Field monitoring and numerical analysis of Tsing Ma Suspension Bridge temperature behavior. Structural Control and Health Monitoring, 20(4):560-575. ![]() [21]XuWC, ChenDS, QianHL, 2020. Non-uniform temperature fields and effects of steel structures: review and outlook. Applied Sciences, 10(15):5255. ![]() [22]XuWC, ChenDS, QianHL, et al., 2021. Non-uniform temperature field and effects of large-span spatial truss structure under construction: field monitoring and numerical analysis. Structures, 29:416-426. ![]() [23]ZhaoZW, LiuHB, ChenZH, 2017. Thermal behavior of large-span reticulated domes covered by ETFE membrane roofs under solar radiation. Thin-Walled Structures, 115:1-11. ![]() [24]ZhouM, FanJS, LiuYF, et al., 2020. Non-uniform temperature field and effect on construction of large-span steel structures. Automation in Construction, 119:103339. ![]() [25]ZhouY, SunLM, 2019. A comprehensive study of the thermal response of a long-span cable-stayed bridge: from monitoring phenomena to underlying mechanisms. Mechanical Systems and Signal Processing, 124:330-348. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>