CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-06-27
Cited: 0
Clicked: 2344
Citations: Bibtex RefMan EndNote GB/T7714
Congyue LI, Yihuai HU, Jiawei JIANG, Dexin CUI. Fault diagnosis of a marine power-generation diesel engine based on the Gramian angular field and a convolutional neural network[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300273 @article{title="Fault diagnosis of a marine power-generation diesel engine based on the Gramian angular field and a convolutional neural network", %0 Journal Article TY - JOUR
基于格拉姆角场和卷积神经网络的船用发电柴油机故障诊断机构:1上海海事大学,商船学院,中国上海,201306;2上海电子信息职业技术学院,机械与能源工程学院,中国上海,201411 目的:船用发电柴油机工作环境恶劣,在内外多激励源的干扰下,振动信号呈现非线性非平稳性的特点。本文旨在对船舶发电柴油机的振动信号进行有效特征提取并准确识别故障类型。同时,研究所提方法的有效性,以提高船舶发电柴油机的故障诊断精度。 创新点:1.一维振动信号可通过格拉姆角场转换为二维图像;一维振动信号可以映射到二维图像的颜色、点、线和其他特征;为充分利用故障特征信息,将格拉姆角和场和格拉姆角差场获得的图像进行加权平均融合。2.利用多注意力机制来优化卷积神经网络学习机制,使网络有选择地提取信号中的关键特征信息。 方法:1.对船舶发电柴油机的气阀间隙进行故障预设,采集柴油机不同健康状态振动信号。2.将振动信号转化为二维图像,并将格拉姆角和场和格拉姆角差场获得的图像进行加权平均融合,以充分利用原信号中的故障特征信息。3.将融合后的图像输入到卷积神经网络中进行自适应特征提取和故障识别。 结论:1.所提方法可准确识别故障类型,平均诊断精度可达98.40%;与其他方法相比,所提方法具有更高的故障诊断精度。2.在不同信噪比下,所提方法与无注意力机制方法相比,准确精度可提高14.80%。3.融合后的图像可为神经网络提供更充足的特征信息,因此具有更高的故障识别精度。4.变负荷实验中,所提方法的准确率均保持在89.00%以上,进一步验证了所提方法的稳定性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AlsalaetJK, HajnayebA, BahedhAS, 2023. Bearing fault diagnosis using normalized diagnostic feature-gram and convolutional neural network. Measurement Science and Technology, 34(4):045901. ![]() [2]CaiBP, SunXT, WangJX, et al., 2020. Fault detection and diagnostic method of diesel engine by combining rule-based algorithm and BNs/BPNNs. Journal of Manufacturing Systems, 57:148-157. ![]() [3]CerradaM, ZuritaG, CabreraD, et al., 2016. Fault diagnosis in spur gears based on genetic algorithm and random forest. Mechanical Systems and Signal Processing, 70-71:87-103. ![]() [4]CuiJL, ZhongQW, ZhengSB, et al., 2022. A lightweight model for bearing fault diagnosis based on Gramian angular field and coordinate attention. Machines, 10(4):282. ![]() [5]DhamandeLS, ChaudhariMB, 2016. Bearing fault diagnosis based on statistical feature extraction in time and frequency domain and neural network. International Journal of Vehicle Structures and Systems, 8(4):229-240. ![]() [6]DuJF, LiXY, GaoYP, et al., 2022. Integrated gradient-based continuous wavelet transform for bearing fault diagnosis. Sensors, 22(22):8760. ![]() [7]FuWL, JiangXH, LiBL, et al., 2023. Rolling bearing fault diagnosis based on 2D time-frequency images and data augmentation technique. Measurement Science and Technology, 34(4):045005. ![]() [8]GouLF, LiHH, ZhengH, et al., 2020. Aeroengine control system sensor fault diagnosis based on CWT and CNN. Mathematical Problems in Engineering, 2020:5357146. ![]() [9]GroverC, TurkN, 2022. A novel fault diagnostic system for rolling element bearings using deep transfer learning on bispectrum contour maps. Engineering Science and Technology, an International Journal, 31:101049. ![]() [10]HajnayebA, 2021. Cavitation analysis in centrifugal pumps based on vibration bispectrum and transfer learning. Shock and Vibration, 2021:6988949. ![]() [11]HeY, TangHS, RenY, et al., 2022. A deep multi-signal fusion adversarial model based transfer learning and residual network for axial piston pump fault diagnosis. Measurement, 192:110889. ![]() [12]HoangDT, KangHJ, 2019. A survey on deep learning based bearing fault diagnosis. Neurocomputing, 335:327-335. ![]() [13]HouSZ, GuoW, WangZQ, et al., 2022. Deep-learning-based fault type identification using modified CEEMDAN and image augmentation in distribution power grid. IEEE Sensors Journal, 22(2):1583-1596. ![]() [14]HuJ, YuYH, YangJG, et al., 2023. Research on the generalisation method of diesel engine exhaust valve leakage fault diagnosis based on acoustic emission. Measurement, 210:112560. ![]() [15]KaratuğÇ, ArslanoğluY, 2022. Development of condition-based maintenance strategy for fault diagnosis for ship engine systems. Ocean Engineering, 256:111515. ![]() [16]ManarikkalI, ElashaF, MbaD, 2021. Diagnostics and prognostics of planetary gearbox using CWT, auto regression (AR) and K-means algorithm. Applied Acoustics, 184:108314. ![]() [17]NayanaBR, GeethanjaliP, 2017. Analysis of statistical time-domain features effectiveness in identification of bearing faults from vibration signal. IEEE Sensors Journal, 17(17):5618-5625. ![]() [18]PanJH, QuLL, PengKX, 2021. Sensor and actuator fault diagnosis for robot joint based on deep CNN. Entropy, 23(6):751. ![]() [19]PengDD, WangH, LiuZL, et al., 2020. Multibranch and multiscale CNN for fault diagnosis of wheelset bearings under strong noise and variable load condition. IEEE Transactions on Industrial Informatics, 16(7):4949-4960. ![]() [20]QianCH, ZhuJJ, ShenYH, et al., 2022. Deep transfer learning in mechanical intelligent fault diagnosis: application and challenge. Neural Processing Letters, 54(3):2509-2531. ![]() [21]RaoX, ShengCX, GuoZW, et al., 2022. A review of online condition monitoring and maintenance strategy for cylinder liner-piston rings of diesel engines. Mechanical Systems and Signal Processing, 165:108385. ![]() [22]RenHR, LiaoXJ, LiZW, et al., 2018. Anomaly detection using piecewise aggregate approximation in the amplitude domain. Applied Intelligence, 48(5):1097-1110. ![]() [23]RenK, ZhangDW, WanMJ, et al., 2021. An infrared and visible image fusion method based on improved DenseNet and mRMR-ZCA. Infrared Physics & Technology, 115:103707. ![]() [24]SchmidhuberJ, 2015. Deep learning in neural networks: an overview. Neural Networks, 61:85-117. ![]() [25]SenanayakaJSL, van KhangH, RobbersmyrKG, 2019. Multiple classifiers and data fusion for robust diagnosis of gearbox mixed fault. IEEE Transactions on Industrial Informatics, 15(8):4569-4579. ![]() [26]SongRW, YuBQ, ShiH, et al., 2023. Support vector machine fault diagnosis based on sparse scaling convex hull. Measurement Science and Technology, 34(3):035101. ![]() [27]SunF, XuH, ZhaoYH, et al., 2022. Data-driven fault diagnosis of control valve with missing data based on modeling and deep residual shrinkage network. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(4):303-313. ![]() [28]TianHX, LiRJ, YangLZ, 2022. Operation status monitoring of reciprocating compressors based on the fusion of spatio-temporal multiple information. Measurement, 204:112087. ![]() [29]WangB, LeiYG, LiNP, et al., 2021. Multiscale convolutional attention network for predicting remaining useful life of machinery. IEEE Transactions on Industrial Electronics, 68(8):7496-7504. ![]() [30]WenL, LiXY, GaoL, 2020. A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Computing and Applications, 32(10):6111-6124. ![]() [31]XieJS, LinMQ, YangBY, et al., 2023. A novel bearing fault diagnosis method under small samples using time-frequency multi-scale convolution layer and hybrid attention mechanism module. Measurement Science and Technology, 34(9):095121. ![]() [32]XuYD, YanXA, FengK, et al., 2022. Attention-based multiscale denoising residual convolutional neural networks for fault diagnosis of rotating machinery. Reliability Engineering & System Safety, 226:108714. ![]() [33]ZhaoR, YanRQ, ChenZH, et al., 2019. Deep learning and its applications to machine health monitoring. Mechanical Systems and Signal Processing, 115:213-237. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>