CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-08-20
Cited: 0
Clicked: 1537
Shujie GAO, Yongjin HU, Zhichang JIANG, Xiaoxiang WANG, Dong YE, Changxing HU. Enhancement in the Hg0 oxidation efficiency and sulfur resistance of CuCl2-modified MnOx-CeOx nanorod catalysts[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2300276 @article{title="Enhancement in the Hg0 oxidation efficiency and sulfur resistance of CuCl2-modified MnOx-CeOx nanorod catalysts", %0 Journal Article TY - JOUR
CuCl2改性对MnOx-CeOx纳米棒催化剂汞氧化性能及抗硫性能的提升机理研究机构:1中国计量大学,质量与安全工程学院,中国杭州,310018;2浙江大学,化工学院,工业生态与环境研究所,中国杭州,310027;3浙大宁波理工学院,机电与能源工程学院,中国宁波,315100 目的:针对燃煤电站多变的烟气条件,研究适用于高汞、含硫烟气的催化剂。 创新点:1.通过水热法合成锰铈氧化物纳米棒,可实现高汞含硫烟气条件下的高效脱汞;2.通过添加CuCl2,在保证催化剂的汞氧化性能的同时,提升其抗硫性能。 方法:利用固定床微反应器对催化剂的汞氧化性能进行研究,并结合物化表征建立催化剂的构效关系,进而揭示CuCl2改性催化剂的抗硫机理。 结论:1.添加CuCl2提升了催化剂的汞氧化性能:在150~250°C温度区间内,催化剂的汞养护效率为100%;在含硫气氛下反应320 min后,锰铈氧化物的汞氧化效率由100%下降到78%;对于CuCl2改性催化剂,共氧化性能依旧维持在100%。2.对于锰铈氧化物催化剂,Mn4+为主要的活性位点;对于CuCl2改性催化剂,除了Mn4+外,Cl?也是其中的活性位点。3.在含硫气氛下,Mn4+利用量的下降是导致锰铈氧化物催化剂活性下降的主要原因,而高反应活性Cl?的存在是CuCl2改性催化剂保持高汞脱除效率的主要原因。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BaltrusJP, GraniteEJ, StankoDC, et al., 2008. Surface characterization of Pd/Al2O3 sorbents for mercury capture from fuel gas. Main Group Chemistry, 7(3):217-225. ![]() [2]ChalkidisA, JampaiahD, HartleyPG, et al., 2019. Regenerable α-MnO2 nanotubes for elemental mercury removal from natural gas. Fuel Processing Technology, 193:317-327. ![]() [3]GallowayB, RoykoM, SasmazE, et al., 2018. Mercury oxidation over Cu-SSZ-13 catalysts under flue gas conditions. Chemical Engineering Journal, 336:253-262. ![]() [4]JampaiahD, ChalkidisA, SabriYM, et al., 2019a. Low-temperature elemental mercury removal over TiO2 nanorods-supported MnOx-FeOx-CrOx. Catalysis Today, 324:174-182. ![]() [5]JampaiahD, ChalkidisA, SabriYM, et al., 2019b. Role of ceria in the design of composite materials for elemental mercury removal. The Chemical Record, 19(7):1407-1419. ![]() [6]JiPD, GaoX, DuXS, et al., 2016. Relationship between the molecular structure of V2O5/TiO2 catalysts and the reactivity of SO2 oxidation. Catalysis Science & Technology, 6(4):1187-1194. ![]() [7]JiangY, LuMY, LiuSJ, et al., 2018. Deactivation by HCl of CeO2-MoO3/TiO2 catalyst for selective catalytic reduction of NO with NH3. RSC Advances, 8(32):17677-17684. ![]() [8]LiHH, WangSK, WangX, et al., 2017. Activity of CuCl2-modified cobalt catalyst supported on Ti-Ce composite for simultaneous catalytic oxidation of Hg0 and NO in a simulated pre-sco process. Chemical Engineering Journal, 316:1103-1113. ![]() [9]LiHH, ZhangJD, CaoYX, et al., 2020. Enhanced activity and SO2 resistance of co-modified CeO2-TiO2 catalyst prepared by facile co-precipitation for elemental mercury removal in flue gas. Applied Organometallic Chemistry, 34(4):e5463. ![]() [10]LiHL, WuCY, LiY, et al., 2012. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures. Applied Catalysis B: Environmental, 111-112:381-388. ![]() [11]LiX, LiuZY, KimJ, et al., 2013. Heterogeneous catalytic reaction of elemental mercury vapor over cupric chloride for mercury emissions control. Applied Catalysis B: Environmental, 132-133:401-407. ![]() [12]LiuH, ChangL, LiuWJ, et al., 2020. Advances in mercury removal from coal-fired flue gas by mineral adsorbents. Chemical Engineering Journal, 379:122263. ![]() [13]LiuZY, LiX, LeeJY, et al., 2015. Oxidation of elemental mercury vapor over γ-Al2O3 supported CuCl2 catalyst for mercury emissions control. Chemical Engineering Journal, 275:1-7. ![]() [14]MaYP, MuBL, ZhangXJ, et al., 2019. Graphene enhanced Mn-Ce binary metal oxides for catalytic oxidation and adsorption of elemental mercury from coal-fired flue gas. Chemical Engineering Journal, 358:1499-1506. ![]() [15]SingKSW, 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57(4):603-619. ![]() [16]WangPY, SuS, XiangJ, et al., 2014. Catalytic oxidation of Hg0 by MnOx-CeO2/γ-Al2O3 catalyst at low temperatures. Chemosphere, 101:49-54. ![]() [17]WuJ, ZhaoZ, HuangTF, et al., 2017. Removal of elemental mercury by Ce-Mn co-modified activated carbon catalyst. Catalysis Communications, 93:62-66. ![]() [18]YangSJ, GuoYF, YanNQ, et al., 2011. Elemental mercury capture from flue gas by magnetic Mn-Fe spinel: effect of chemical heterogeneity. Industrial & Engineering Chemistry Research, 50(16):9650-9656. ![]() [19]YangYJ, LiuJ, ZhangBK, et al., 2017a. Density functional theory study on the heterogeneous reaction between Hg0 and HCl over spinel-type MnFe2O4. Chemical Engineering Journal, 308:897-903. ![]() [20]YangYJ, LiuJ, ZhangBK, et al., 2017b. Experimental and theoretical studies of mercury oxidation over CeO2-WO3/TiO2 catalysts in coal-fired flue gas. Chemical Engineering Journal, 317:758-765. ![]() [21]YeD, WangXX, LiuH, et al., 2020. Insights into the effects of sulfate species on CuO/TiO2 catalysts for NH3-SCR reactions. Molecular Catalysis, 496:111191. ![]() [22]YeD, WangXX, WangRX, et al., 2021. Recent advances in MnO2-based adsorbents for mercury removal from coal-fired flue gas. Journal of Environmental Chemical Engineering, 9(5):105993. ![]() [23]YeD, WangRX, WangXX, et al., 2022a. Improvement in the Hg0 removal performance of CeO2 by modifying with CuO. Applied Surface Science, 579:152200. ![]() [24]YeD, WangXX, WangRX, et al., 2022b. Review of elemental mercury (Hg0) removal by CuO-based materials. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(7):505-526. ![]() [25]YeD, HuYJ, JiangZC, et al., 2023a. Mechanistic investigation on Hg0 capture over MnOx adsorbents: effects of the synthesis methods. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 24(1):80-90. ![]() [26]YeD, GaoSJ, WangYL, et al., 2023b. New insights into the morphological effects of MnOx-CeOx binary mixed oxides on Hg0 capture. Applied Surface Science, 613:156035. ![]() [27]ZhangAC, ZhangZH, LuH, et al., 2015. Effect of promotion with Ru addition on the activity and SO2 resistance of MnOx-TiO2 adsorbent for Hg0 removal. Industrial & Engineering Chemistry Research, 54(11):2930-2939. ![]() [28]ZhangD, HouLA, ChenGY, et al., 2018. Cr doping MnOx adsorbent significantly improving Hg0 removal and SO2 resistance from coal-fired flue gas and the mechanism investigation. Industrial & Engineering Chemistry Research, 57(50):17245-17258. ![]() [29]ZhouZJ, LiuXW, HuYC, et al., 2018. An efficient sorbent based on CuCl2 loaded CeO2-ZrO2 for elemental mercury removal from chlorine-free flue gas. Fuel, 216:356-363. ![]() [30]ZhouZJ, LiuL, LiuXW, et al., 2022. Catalytic oxidation of Hg0 over Mn-doped CeO2-ZrO2 solid solution and MnOx/CeO2-ZrO2 supported catalysts: characterization, catalytic activity and SO2 resistance. Fuel, 310:122317. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>