Full Text:  <701>

Suppl. Mater.: 

CLC number: 

On-line Access: 2025-03-31

Received: 2024-01-05

Revision Accepted: 2024-04-19

Crosschecked: 2025-03-31

Cited: 0

Clicked: 1591

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Junxing ZHAO

https://orcid.org/0009-0009-8230-0165

Xiaobin DING

https://orcid.org/0000-0002-6168-4819

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A

Accepted manuscript available online (unedited version)


Predicting tunnel boring machine performance with the Informer model: a case study of the Guangzhou Metro Line project


Author(s):  Junxing ZHAO, Xiaobin DING

Affiliation(s):  School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China; more

Corresponding email(s):  dingxb@scut.edu.cn

Key Words:  Boring machine performance; Informer model; Deep learning; Thrust force


Share this article to: More <<< Previous Paper|Next Paper >>>

Junxing ZHAO, Xiaobin DING. Predicting tunnel boring machine performance with the Informer model: a case study of the Guangzhou Metro Line project[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400012

@article{title="Predicting tunnel boring machine performance with the Informer model: a case study of the Guangzhou Metro Line project",
author="Junxing ZHAO, Xiaobin DING",
journal="Journal of Zhejiang University Science A",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.A2400012"
}

%0 Journal Article
%T Predicting tunnel boring machine performance with the Informer model: a case study of the Guangzhou Metro Line project
%A Junxing ZHAO
%A Xiaobin DING
%J Journal of Zhejiang University SCIENCE A
%P 226-237
%@ 1673-565X
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.A2400012"

TY - JOUR
T1 - Predicting tunnel boring machine performance with the Informer model: a case study of the Guangzhou Metro Line project
A1 - Junxing ZHAO
A1 - Xiaobin DING
J0 - Journal of Zhejiang University Science A
SP - 226
EP - 237
%@ 1673-565X
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.A2400012"


Abstract: 
Accurately forecasting the operational performance of a tunnel boring machine (TBM) in advance is useful for making timely adjustments to boring parameters, thereby enhancing overall boring efficiency. In this study, we used the Informer model to predict a critical performance parameter of the TBM, namely thrust. Leveraging data from the Guangzhou Metro Line 22 project on the big data platform in China, the model’s performance was validated, while data from Line 18 were used to assess its generalization capability. Results revealed that the Informer model surpasses random forest (RF), extreme gradient boosting (XGB), support vector regression (SVR), k-nearest neighbors (KNN), back propagation (BP), and long short-term memory (LSTM) models in both prediction accuracy and generalization performance. In addition, the optimal input lengths for maximizing accuracy in the single-time-step output model are within the range of 8–24, while for the multiple-time-step output model, the optimal input length is 8. Furthermore, the last predicted value in the case of multiple-time-step outputs showed the highest accuracy. It was also found that relaxation of the Pearson analysis method metrics to 0.95 improved the performance of the model. Finally, the prediction results were most affected by earth pressure, rotation speed, torque, boring speed, and the surrounding rock grade. The model can provide useful guidance for constructors when adjusting TBM operation parameters.

利用Informer模型预测隧道掘进机性能:广州地铁项目案例研究

作者:赵君行1,丁小彬1,2
机构:1华南理工大学,土木与交通学院,中国广州,510641;2华南理工大学,广东省现代土木工程技术重点实验室,中国广州,511442
目的:提前准确预测隧道掘进机(TBM)的运行性能有助于及时调整掘进参数,从而提高整体掘进效率。本文旨在探讨不同模型和时间长度对TBM性能预测效果的影响,并考虑土压、转速、扭矩、掘进速度、推力、岩石单轴抗压强度、围岩等级和液限等因素,研究得出预测性能最好的模型,以提高TBM性能的预测精度。
创新点:1.提出了预测TBM性能的Informer模型框架;2.每个模型仅使用7个参数预测TBM性能;3.确定了Informer模型的最佳参数组合;4.研究发现Informer模型在性能和概括能力方面优于其他比较模型。
方法:1.数据收集与分析,确定模型输入参数;2.通过不同模型预测TBM性能,并比较预测性能;3.通过不同模型对新数据进行预测,得到模型的泛化能力;4.比较不同输入长度与不同参数组合对TBM性能预测的影响。
结论:1.随机森林、极端梯度提升树、支持向量机、K近邻、反向传播神经网络和长短时记忆模型被用作对比模型;这些模型在原始项目的测试集上表现良好,但在新项目上表现不佳,且缺乏一定的泛化能力。2.单时间步和多时间步输出对模型的影响截然不同;在确定输入参数的合适时间间隔时应审慎考虑;在本次调查中,8至24分钟的输入长度被证明适用于单时间步骤输出,而8分钟的输入长度被认为适用于多时间步骤输出;模型相关系数分别可达0.99和0.98。3.计算了模型预测值的相关系数,包括平均预测值、首次预测值和最后一次预测值,且最后一次预测值与真实值的相关性更强。4.鉴于模型中输入参数的数量有限,皮尔逊分析方法的排除阈值从0.80调整为0.95;这一调整使得新模型在新数据上的表现优于之前的模型。5.敏感性分析表明,影响预测结果的输入参数从大到小依次为刀盘转速、土压力、围岩等级和扭矩,且这些参数的相关系数超过0.95;相反,岩石单轴抗压强度和液限对预测结果的影响相对较小(相关系数约为0.77)。

关键词组:TBM性能;Informer模型;深度学习;推力

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AsterisPG, TsarisAK, CavaleriL, et al., 2016. Prediction of the fundamental period of infilled RC frame structures using artificial neural networks. Computational Intelligence and Neuroscience, 2016:5104907.

[2]AsterisPG, NozhatiS, NikooM, et al., 2019. Krill herd algorithm-based neural network in structural seismic reliability evaluation. Mechanics of Advanced Materials and Structures, 26(13):1146-1153.

[3]AsterisPG, LemonisME, LeTT, et al., 2021a. Evaluation of the ultimate eccentric load of rectangular CFSTs using advanced neural network modeling. Engineering Structures, 248:113297.

[4]AsterisPG, SkentouAD, BardhanA, et al., 2021b. Soft computing techniques for the prediction of concrete compressive strength using non-destructive tests. Construction and Building Materials, 303:124450.

[5]BenestyJ, ChenJD, HuangYT, et al., 2009. Pearson correlation coefficient. In: Cohen I, Huang YT, Chen JD, et al. (Eds.), Noise Reduction in Speech Processing. Springer, Berlin, Germany, p.1-4.

[6]BengioY, SimardP, FrasconiP, 1994. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157-166.

[7]BilginN, YükselA, 2023. The effect of EPB face pressure on TBM performance parameters in different geological formations of Istanbul. Tunnelling and Underground Space Technology, 138:105184.

[8]CarterNJ, SchwertmanNC, KiserTL, 2009. A comparison of two boxplot methods for detecting univariate outliers which adjust for sample size and asymmetry. Statistical Methodology, 6(6):604-621.

[9]ChenXS, FuYB, ChenX, et al., 2022. Progress in underground space construction technology and technical challenges of digital intelligence. China Journal of Highway and Transport, 35(1):1-12 (in Chinese).

[10]EmadW, MohammedAS, BrasA, et al., 2022. Metamodel techniques to estimate the compressive strength of UHPFRC using various mix proportions and a high range of curing temperatures. Construction and Building Materials, 349:128737.

[11]GaoBY, WangRR, LinCJ, et al., 2021. TBM penetration rate prediction based on the long short-term memory neural network. Underground Space, 6(6):718-731.

[12]HajihassaniM, AbdullahSS, AsterisPG, et al., 2019. A gene expression programming model for predicting tunnel convergence. Applied Sciences, 9(21):4650.

[13]HassanpourJ, 2018. Development of an empirical model to estimate disc cutter wear for sedimentary and low to medium grade metamorphic rocks. Tunnelling and Underground Space Technology, 75:90-99.

[14]LiJH, LiPX, GuoD, et al., 2021. Advanced prediction of tunnel boring machine performance based on big data. Geoscience Frontiers, 12(1):331-338.

[15]LiZM, Yazdani BejarbanehB, AsterisPG, et al., 2021. A hybrid GEP and WOA approach to estimate the optimal penetration rate of TBM in granitic rock mass. Soft Computing, 25(17):11877-11895.

[16]LiuQS, HuangX, GongQM, et al., 2016. Application and development of hard rock TBM and its prospect in China. Tunnelling and Underground Space Technology, 57:33-46.

[17]LuZP, ShiKB, 2023. A novel VMD-LHPO-KELM machine learning-based TBM boring parameter prediction. Earth Science Informatics, 16(3):2925-2938.

[18]MahmoodzadehA, NejatiHR, MohammadiM, et al., 2022. Forecasting tunnel boring machine penetration rate using LSTM deep neural network optimized by grey wolf optimization algorithm. Expert Systems with Applications, 209:118303.

[19]PanYC, LiuQS, LiuQ, et al., 2020. Full-scale linear cutting tests to check and modify a widely used semi-theoretical model for disc cutter cutting force prediction. Acta Geotechnica, 15(6):1481-1500.

[20]PsyllakiP, StamatiouK, IliadisI, et al., 2018. Surface treatment of tool steels against galling failure. MATEC Web of Conferences, 188:04024.

[21]RostamiJ, 1997. Development of a Force Estimation Model for Rock Fragmentation with Disc Cutters Through Theoretical Modeling and Physical Measurement of Crushed Zone Pressure. PhD Thesis, Colorado School of Mines, Colorado, USA.

[22]RostamiJ, 2016. Performance prediction of hard rock tunnel boring machines (TBMs) in difficult ground. Tunnelling and Underground Space Technology, 57:173-182.

[23]ShiQH, SongPF, TanZW, et al., 2022. GA-BP neural network prediction model for tunneling speed of shield machine with composite formation dual mode (TBM-EPB). Proceedings of the International Conference on Computational Infrastructure and Urban Planning, p.1-4.

[24]XuQH, HuangX, ZhangBG, et al., 2023. TBM performance prediction using LSTM-based hybrid neural network model: case study of Baimang River tunnel project in Shenzhen, China. Underground Space, 11:130-152.

[25]XueYD, LuoW, ChenL, et al., 2023. An intelligent method for TBM surrounding rock classification based on time series segmentation of rock-machine interaction data. Tunnelling and Underground Space Technology, 140:105317.

[26]YagizS, 2008. Utilizing rock mass properties for predicting TBM performance in hard rock condition. Tunnelling and Underground Space Technology, 23(3):326-339.

[27]YangY, ZhangQ, 1997. A hierarchical analysis for rock engineering using artificial neural networks. Rock Mechanics and Rock Engineering, 30(4):207-222.

[28]ZhangL, GaoJR, ZhangB, et al., 2015. Application status and prospects for the casting support tunnelling system using TBM. Modern Tunnelling Technology, 52(5):24-31 (in Chinese).

[29]ZhengYL, ZhangQB, ZhaoJ, 2016. Challenges and opportunities of using tunnel boring machines in mining. Tunnelling and Underground Space Technology, 57:287-299.

[30]ZhouJ, Yazdani BejarbanehB, Jahed ArmaghaniD, et al., 2020. Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques. Bulletin of Engineering Geology and the Environment, 79(4):2069-2084.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE