Full Text:  <417>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 681

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A

Accepted manuscript available online (unedited version)


Aerodynamics and countermeasures of train-tail swaying inside single-line tunnels


Author(s):  Yadong SONG, Yanpeng ZOU, Yuan YAO, Ting QIN, Longjiang SHEN

Affiliation(s):  State Key Laboratory of Rail Transit Vehicle System, Southwest Jiaotong University, Chengdu 610031, China; more

Corresponding email(s):  yyuan8848@163.com

Key Words:  Train-tail swaying; Vortex-induced vibration; Wake flow field; Train aerodynamics; Vehicle dynamics


Share this article to: More <<< Previous Paper|Next Paper >>>

Yadong SONG, Yanpeng ZOU, Yuan YAO, Ting QIN, Longjiang SHEN. Aerodynamics and countermeasures of train-tail swaying inside single-line tunnels[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400039

@article{title="Aerodynamics and countermeasures of train-tail swaying inside single-line tunnels",
author="Yadong SONG, Yanpeng ZOU, Yuan YAO, Ting QIN, Longjiang SHEN",
journal="Journal of Zhejiang University Science A",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.A2400039"
}

%0 Journal Article
%T Aerodynamics and countermeasures of train-tail swaying inside single-line tunnels
%A Yadong SONG
%A Yanpeng ZOU
%A Yuan YAO
%A Ting QIN
%A Longjiang SHEN
%J Journal of Zhejiang University SCIENCE A
%P
%@ 1673-565X
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.A2400039"

TY - JOUR
T1 - Aerodynamics and countermeasures of train-tail swaying inside single-line tunnels
A1 - Yadong SONG
A1 - Yanpeng ZOU
A1 - Yuan YAO
A1 - Ting QIN
A1 - Longjiang SHEN
J0 - Journal of Zhejiang University Science A
SP -
EP -
%@ 1673-565X
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.A2400039"


Abstract: 
In recent years, train-tail swaying of 160 km/h EMUs inside single-line tunnels has been heavily researched, because the issue needs to be solved urgently. In this paper, a co-simulation model of vortex-induced vibration (VIV) of the tail carbody is established, and the aerodynamics of train-tail swaying is studied. The simulation results were confirmed through a field test of operating EMUs. Furthermore, the influence mechanism of train-tail swaying on the wake flow field is studied in detail through a wind-tunnel experiment and a simulation of a reduced-scaled train model. The results demonstrate that the aerodynamic force frequency (i.e., vortex-induced frequency) of the train tail increases linearly with train speed. When the train runs at 130 km/h, with a small amplitude of train-tail swaying (within 10 mm), the vortex-induced frequency is 1.7 Hz, which primarily depends on the nose shape of the train tail. After the tail carbody's nose is extended, the vortex-induced frequency is decreased. As the swaying amplitude of the train tail increases (exceeding 25 mm), the separation point of the high-intensity vortex in the train wake shifts downstream to the nose tip, and the vortex-induced frequency shifts from 1.7 Hz to the nearby carbody hunting (i.e., the primary hunting) frequency of 1.3 Hz, which leads to the frequency-locking phenomenon of VIV, and the resonance intensifies train-tail swaying. For the motor vehicle of the train tail, optimization of the yaw damper to improve its primary hunting stability can effectively alleviate train-tail swaying inside single-line tunnels. Optimization of the tail-carbody nose shape reduces the amplitude of the vortex-induced force, thereby weakening the aerodynamic effect and solving the problem of train-tail swaying inside the single-line tunnels.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE