Full Text:  <257>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 442

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A

Accepted manuscript available online (unedited version)


Numerical investigation of the transient process of a cover-plate pre-swirl system


Author(s):  Yifu LUO, Qiang DU, Zengyan LIAN, Guang LIU, Lei XIE, Qingzong XU

Affiliation(s):  Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China; more

Corresponding email(s):  duqiang@iet.cn

Key Words:  Upstream effect; Unsteady flow; Transient response; Cover-plate cavity; Pre-swirl system


Share this article to: More <<< Previous Paper|Next Paper >>>

Yifu LUO, Qiang DU, Zengyan LIAN, Guang LIU, Lei XIE, Qingzong XU. Numerical investigation of the transient process of a cover-plate pre-swirl system[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400134

@article{title="Numerical investigation of the transient process of a cover-plate pre-swirl system",
author="Yifu LUO, Qiang DU, Zengyan LIAN, Guang LIU, Lei XIE, Qingzong XU",
journal="Journal of Zhejiang University Science A",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.A2400134"
}

%0 Journal Article
%T Numerical investigation of the transient process of a cover-plate pre-swirl system
%A Yifu LUO
%A Qiang DU
%A Zengyan LIAN
%A Guang LIU
%A Lei XIE
%A Qingzong XU
%J Journal of Zhejiang University SCIENCE A
%P
%@ 1673-565X
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.A2400134"

TY - JOUR
T1 - Numerical investigation of the transient process of a cover-plate pre-swirl system
A1 - Yifu LUO
A1 - Qiang DU
A1 - Zengyan LIAN
A1 - Guang LIU
A1 - Lei XIE
A1 - Qingzong XU
J0 - Journal of Zhejiang University Science A
SP -
EP -
%@ 1673-565X
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.A2400134"


Abstract: 
A pre-swirl system with a multi-chamber structure is crucial to the secondary air system of an aero engine. The airflow within the pre-swirl system (characterized by high-speed rotation and compressible flow) is complicated. During transient processes in aeroengine operation, the pre-swirl system is subjected to upstream fluctuations, which is a less studied aspect. This paper delves into the unsteady flow characteristics within the pre-swirl system. We investigate the influence of different pressure-fluctuation boundary conditions, corresponding to step function, ramp function, and sine function, on the transient response characteristics of the pre-swirl system. The results indicate that the response characteristics are strongly affected by the upstream boundary conditions. An obvious overshoot phenomenon is observed in the actual temperature drop under the step and ramp function conditions. The peak time tp of the step function is 75% shorter compared to the ramp function. Furthermore, the flow parameters exhibit nonlinear growth during the transient process, emphasizing the need for consideration in future quasi-steady simulations. For the sine function condition, the pressure-fluctuation frequency minimally affects stable values of mass flow rate and actual temperature drop but exerts a substantial influence on the maximum deviation of ∆Tsys. As the frequency increases from 100 Hz to 200 Hz, the ∆Tsys decreases from around ±13 K to ±10 K.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE