CLC number:
On-line Access: 2025-07-29
Received: 2024-04-16
Revision Accepted: 2024-07-01
Crosschecked: 2025-07-29
Cited: 0
Clicked: 1788
Haiyang WU, Jiangfeng LOU, Yuntong DAI, Biao ZHANG, Kai LI. Multi-scale analysis of the self-vibration of a liquid crystal elastomer fiber-spring system exposed to constant-gradient light[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400194 @article{title="Multi-scale analysis of the self-vibration of a liquid crystal elastomer fiber-spring system exposed to constant-gradient light", %0 Journal Article TY - JOUR
恒定梯度光下液晶弹性体纤维-弹簧自振系统的多尺度分析机构:安徽建筑大学,土木工程学院,中国合肥,230601 目的:目前基于主动材料的自振动系统的解析解难以获得,阻碍该类自振动系统的设计与应用。本文旨在加深对液晶弹性体纤维弹簧系统的理解,并得到液晶弹性体纤维弹簧系统的自振动解析解和稳定性判据。 创新点:1.推导出液晶弹性体纤维-弹簧自振动系统稳定性判据;2.推导出液晶弹性体纤维-弹簧自振动系统的幅度和频率解析解。 方法:1.提出一种空间线性光场下的液晶弹性体纤维-弹簧自振动系统;2.通过数值计算确定两种不同的运动模式,并阐明自振动的机制;3.将控制方程线性化处理,并使用Hurwitz准则进行分岔分析;4.使用多尺度方法对控制方程进行分析,确定振幅和周期的解析解。 结论:1.系统的自振动模式和振幅及频率可由系统参数调节;2.运用多尺度方法对液晶弹性体纤维-弹簧自振动系统进行分析求解,得到的振幅和频率结果与数值结果一致,且计算效率大幅提升。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AllgowerEL, GeorgK, 1990. Numerical Continuation Methods: an Introduction. Springer, Berlin, Germany. ![]() [2]BaiCP, KangJT, WangYQ, 2024. Light-induced motion of three-dimensional pendulum with liquid crystal elastomeric fiber. International Journal of Mechanical Science, 266:108911. ![]() [3]BaumannA, Sánchez-FerrerA, JacomineL, et al., 2018. Motorizing fibres with geometric zero-energy modes. Nature Materials, 17(6):523-527. ![]() [4]BazirA, BaumannA, ZiebertF, et al., 2020. Dynamics of fiberboids. Soft Matter, 16(22):5210-5223. ![]() [5]BoissonadeJ, de KepperP, 2011. Multiple types of spatio-temporal oscillations induced by differential diffusion in the Landolt reaction. Physical Chemistry Chemical Physics, 13(9):4132-4137. ![]() [6]ChakrabartiA, ChoiGPT, MahadevanL, 2020. Self-excited motions of volatile drops on swellable sheets. Physical Review Letters, 124(25):258002. ![]() [7]ChenBH, LiuCY, XuZT, et al., 2024. Modeling the thermo-responsive behaviors of polydomain and monodomain nematic liquid crystal elastomers. Mechanics of Materials, 188:104838. ![]() [8]ChenG, XianWK, WangQM, et al., 2021. Molecular simulation-guided and physics-informed mechanistic modeling of multifunctional polymers. Acta Mechanica Sinica, 37(5):725-745. ![]() [9]ChengQB, ChengWY, DaiYT, et al., 2023. Self-oscillating floating of a spherical liquid crystal elastomer balloon under steady illumination. International Journal of Mechanical Science, 241:107985. ![]() [10]ChengYC, LuHC, LeeX, et al., 2020. Kirigami-based light-induced shape-morphing and locomotion. Advanced Materials, 32(7):1906233. ![]() [11]CheungYK, ChenSH, LauSL, 1990. Application of the incremental harmonic balance method to cubic non-linearity systems. Journal of Sound and Vibration, 140(2):273-286. ![]() [12]CuiY, YinYF, WangCJ, et al., 2019. Transient thermo-mechanical analysis for bimorph soft robot based on thermally responsive liquid crystal elastomers. Applied Mathematics and Mechanics, 40(7):943-952. ![]() [13]DaiL, WangLQ, ChenBH, et al., 2023. Shape memory behaviors of 3D printed liquid crystal elastomers. Soft Science, 3(1):5. ![]() [14]DingWJ, 2010. Self-Excited Vibration. Springer, Berlin, Germany. ![]() [15]FanST, ShenYJ, 2022. Extension of multi-scale method and its application to nonlinear viscoelastic system. Chinese Journal of Theoretical and Applied Mechanics, 54(2):495-502 (in Chinese). ![]() [16]FangP, DaiLM, HouYJ, et al., 2019. The study of identification method for dynamic behavior of high-dimensional nonlinear system. Shock and Vibration, 2019:3497410. ![]() [17]FuL, ZhaoWQ, MaJY, et al., 2022. A humidity-powered soft robot with fast rolling locomotion. Research, 2022:9832901. ![]() [18]GeDL, DaiYT, LiK, 2023. Self-sustained Euler buckling of an optically responsive rod with different boundary constraints. Polymers, 15(2):316. ![]() [19]GeFJ, YangR, TongX, et al., 2018. A multifunctional dye-doped liquid crystal polymer actuator: light-guided transportation, turning in locomotion, and autonomous motion. Angewandte Chemie International Edition, 57(36):11758-11763. ![]() [20]GuoYL, LiuN, CaoQ, et al., 2022. Photothermal diol for NIR-responsive liquid crystal elastomers. ACS Applied Polymer Materials, 4(8):6202-6210. ![]() [21]HaberJM, Sánchez-FerrerA, MihutAM, et al., 2013. Liquid-crystalline elastomer-nanoparticle hybrids with reversible switch of magnetic memory. Advanced Materials, 25(12):1787-1791. ![]() [22]HarrisKD, BastiaansenCWM, LubJ, et al., 2005. Self-assembled polymer films for controlled agent-driven motion. Nano Letters, 5(9):1857-1860. ![]() [23]HeQG, WangZJ, WangY, et al., 2021. Electrospun liquid crystal elastomer microfiber actuator. Science Robotics, 6(57):eabi9704. ![]() [24]HeQG, YinR, HuaYC, et al., 2023. A modular strategy for distributed, embodied control of electronics-free soft robots. Science Advances, 9(27):eade9247. ![]() [25]HellerMD, 2005. Hurwitz-based stability criteria for bounded nonlinear time-varying systems. International Conference on Control and Automation, p.942-947. ![]() [26]HoMT, DattaA, BhattacharyyaSP, 1998. An elementary derivation of the Routh-Hurwitz criterion. IEEE Transactions on Automatic Control, 43(3):405-409. ![]() [27]HuY, JiQX, HuangMJ, et al., 2021. Light-driven self-oscillating actuators with phototactic locomotion based on black phosphorus heterostructure. Angewandte Chemie International Edition, 60(37):20511-20517. ![]() [28]HuaMT, KimC, DuYJ, et al., 2021. Swaying gel: chemo-mechanical self-oscillation based on dynamic buckling. Matter, 4(3):1029-1041. ![]() [29]KageyamaY, IkegamiT, SatonagaS, et al., 2020. Light-driven flipping of azobenzene assemblies-sparse crystal structures and responsive behaviour to polarised light. Chemistry-A European Journal, 26(47):10759-10768. ![]() [30]KimY, van den BergJ, CrosbyAJ, 2021. Autonomous snapping and jumping polymer gels. Nature Materials, 20(12):1695-1701. ![]() [31]KumarK, KnieC, BlégerD, et al., 2016. A chaotic self-oscillating sunlight-driven polymer actuator. Nature Communications, 7(1):11975. ![]() [32]LiJH, ZhangJY, GeW, et al., 2004. Multi-scale methodology for complex systems. Chemical Engineering Science, 59(8-9):1687-1700. ![]() [33]LiMH, KellerP, LiB, et al., 2003. Light-driven side-on nematic elastomer actuators. Advanced Materials, 15(7-8):569-572. ![]() [34]LiZW, MyungNV, YinYD, 2021. Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming. Science Robotics, 6(61):eabi4523. ![]() [35]LiaoB, ZangHB, ChenMY, et al., 2020. Soft rod-climbing robot inspired by winding locomotion of snake. Soft Robotics, 7(4):500-511. ![]() [36]LiaoW, YangZQ, 2022. The integration of sensing and actuating based on a simple design fiber actuator towards intelligent soft robots. Advanced Materials Technologies, 7(6):2101260. ![]() [37]LiuJX, ShiF, SongWQ, et al., 2024. Modeling of self-oscillating flexible circuits based on liquid crystal elastomers. International Journal of Mechanical Science, 270:109099. ![]() [38]MannaRK, ShklyaevOE, BalazsAC, 2021. Chemical pumps and flexible sheets spontaneously form self-regulating oscillators in solution. Proceedings of the National Academy of Sciences of the United States of America, 118(12):e2022987118. ![]() [39]MärzR, 1984. On difference and shooting methods for boundary value problems in differential-algebraic equations. ZAMM-Journal of Applied Mathematics and Mechanics, 64(11):463-473. ![]() [40]McLachlanRI, SunY, TsePSP, 2011. Linear stability of partitioned Runge-Kutta methods. SIAM Journal on Numerical Analysis, 49(1):232-263. ![]() [41]NägeleT, HocheR, ZinthW, et al., 1997. Femtosecond photoisomerization of cis-azobenzene. Chemical Physics Letters, 272(5-6):489-495. ![]() [42]NayfehAH, 1965. A perturbation method for treating nonlinear oscillation problems. Journal of Mathematics and Physics, 44(1-4):368-374. ![]() [43]NayfehAH, 1993. Introduction to Perturbation Techniques. John Wiley & Sons, Berlin, Germany. ![]() [44]NayfehAH, MookDT, 1979. Nonlinear Oscillations. John Wiley & Sons Inc., Germany. ![]() [45]NayfehAH, PaiPF, 2008. Linear and Nonlinear Structural Mechanics. John Wiley & Sons Inc., Germany. ![]() [46]NocentiniS, ParmeggianiC, MartellaD, et al., 2018. Optically driven soft micro robotics. Advanced Optical Materials, 6(14):1800207. ![]() [47]PantonRL, 2013. Asymptotic analysis methods. In: Panton RL (Ed.), Incompressible Flow. 4th Edition. John Wiley and Sons, Inc., Hoboken, USA, p.374-408. ![]() [48]PatidarKC, 2005. On the use of nonstandard finite difference methods. Journal of Difference Equations and Applications, 11(8):735-758. ![]() [49]PivnenkoM, FedoryakoA, KutulyaL, et al., 1999. Resonance phenomena in a ferroelectric liquid crystal near the phase transition SmA-SmC. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 328(14):111-118. ![]() [50]PrestonDJ, JiangHJ, SanchezV, et al., 2019. A soft ring oscillator. Science Robotics, 4(31):eaaw5496. ![]() [51]SerakS, TabiryanN, VergaraR, et al., 2010. Liquid crystalline polymer cantilever oscillators fueled by light. Soft Matter, 6(4):779-783. ![]() [52]ShastriA, McGregorLM, LiuY, et al., 2015. An aptamer-functionalized chemomechanically modulated biomolecule catch-and-release system. Nature Chemistry, 7(5):447-454. ![]() [53]SturrockPA, 1957. Non-linear effects in electron plasmas. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 242(1230):277-299. ![]() [54]SunJH, WangYP, LiaoW, et al., 2021. Ultrafast, high-contractile electrothermal-driven liquid crystal elastomer fibers towards artificial muscles. Small, 17(44):2103700. ![]() [55]ThomsonWT, DahlehMD, 2005. Theory of Vibration with Applications. 5th Edition. Pearson, Hoboken, USA. ![]() [56]VestroniF, LuongoA, PaoloneA, 2008. A perturbation method for evaluating nonlinear normal modes of a piecewise linear two-degrees-of-freedom system. Nonlinear Dynamics, 54(4):379-393. ![]() [57]WangLQ, WeiZX, XuZT, et al., 2023. Shape morphing of 3D printed liquid crystal elastomer structures with precuts. ACS Applied Polymer Materials, 5(9):7477-7484. ![]() [58]WangXQ, TanCF, ChanKH, et al., 2018. In-built thermo-mechanical cooperative feedback mechanism for self-propelled multimodal locomotion and electricity generation. Nature Communications, 9(1):3438. ![]() [59]WangY, XiaoJL, 2021. Confined thin film wrinkling on shape memory polymer with hybrid surface morphologies. Acta Mechanica Sinica, 37(7):1063-1071. ![]() [60]WangYC, DangAL, ZhangZF, et al., 2020. Repeatable and reprogrammable shape morphing from photoresponsive gold nanorod/liquid crystal elastomers. Advanced Materials, 32(46):2004270. ![]() [61]WangYC, LiuJQ, YangS, 2022. Multi-functional liquid crystal elastomer composites. Applied Physics Reviews, 9(1):011301. ![]() [62]WangYC, YinR, JinLS, et al., 2023. 3D-printed photoresponsive liquid crystal elastomer composites for free-form actuation. Advanced Functional Materials, 33(4):2210614. ![]() [63]WhiteTJ, TabiryanNV, SerakSV, et al., 2008. A high frequency photodriven polymer oscillator. Soft Matter, 4(9):1796-1798. ![]() [64]WuHY, DaiYT, LiK, 2023. Self-vibration of liquid crystal elastomer strings under steady illumination. Polymers, 15(16):3483. ![]() [65]WuHY, LouJF, ZhangB, et al., 2024a. Stability analysis of a liquid crystal elastomer self-oscillator under a linear temperature field. Applied Mathematics and Mechanics, 45(2):337-354. ![]() [66]WuHY, ZhangB, LiK, 2024b. Synchronous behaviors of three coupled liquid crystal elastomer-based spring oscillators under linear temperature fields. Physical Review E, 109(2):024701. ![]() [67]XuPB, ChenYQ, WuHY, et al., 2024a. Chaotic motion behaviors of liquid crystal elastomer pendulum under periodic illumination. Results in Physics, 56:107332. ![]() [68]XuPB, ChenYQ, SunX, et al., 2024b. Light-powered self-sustained chaotic motion of a liquid crystal elastomer-based pendulum. Chaos, Solitons & Fractals, 184:115027. ![]() [69]XuPB, SunX, DaiYT, et al., 2024c. Light-powered sustained chaotic jumping of a liquid crystal elastomer balloon. International Journal of Mechanical Science, 266:108922. ![]() [70]YanZP, DaiHH, WangQS, et al., 2023. Harmonic balance methods: a review and recent developments. Computer Modeling in Engineering & Sciences, 137(2):1419-1459. ![]() [71]YangHX, ZhangC, ChenBH, et al., 2023. Bioinspired design of stimuli-responsive artificial muscles with multiple actuation modes. Smart Materials and Structures, 32(8):085023. ![]() [72]YoshidaR, 2010. Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials. Advanced Materials, 22(31):3463-3483. ![]() [73]YuY, DuCS, LiK, et al., 2022. Controllable and versatile self-motivated motion of a fiber on a hot surface. Extreme Mechanics Letters, 57:101918. ![]() [74]YuY, HuHY, WuHY, et al., 2024a. A light-powered self-rotating liquid crystal elastomer drill. Heliyon, 10(6):e27748. ![]() [75]YuY, HuHY, DaiYT, et al., 2024b. Modeling the light-powered self-rotation of a liquid crystal elastomer fiber-based engine. Physical Review E, 109(3):034701. ![]() [76]YuY, ZhouL, DuCS, et al., 2024c. Self-galloping of a liquid crystal elastomer catenary cable under a steady temperature field. Thin-Walled Structures, 202:112071. ![]() [77]ZengH, LahikainenM, LiuL, et al., 2019. Light-fuelled freestyle self-oscillators. Nature Communications, 10(1):5057. ![]() [78]ZhouL, ChenHM, LiK, 2024. Optically-responsive liquid crystal elastomer thin film motors in linear/nonlinear optical fields. Thin-Walled Structures, 202:112082. ![]() [79]ZuoW, SunTL, DaiYT, et al., 2023. Light-powered self-propelled trolley with a liquid crystal elastomer pendulum motor. International Journal of Solids and Structures, 285:112500. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>