CLC number:
On-line Access: 2025-06-25
Received: 2024-06-05
Revision Accepted: 2024-08-24
Crosschecked: 2025-06-25
Cited: 0
Clicked: 711
Citations: Bibtex RefMan EndNote GB/T7714
Shun WENG, Liying WU, Lanbin ZHANG, Ke GAO, Junshu ZHANG, Zhiyue ZHANG, Huliang DAI. Multi-directional wind energy harvesting based on the coupling effect between a piezoelectric beam and an elastic-supported sphere[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400260 @article{title="Multi-directional wind energy harvesting based on the coupling effect between a piezoelectric beam and an elastic-supported sphere", %0 Journal Article TY - JOUR
基于压电梁与弹性支撑球体耦合效应的多方向风能采集机构:1华中科技大学,土木与水利工程学院,中国武汉,430074;2中国地质大学,工程学院,中国武汉,430074;3华中科技大学,航空航天学院,中国武汉,430074 目的:无线传感器网络在结构健康监测中非常关键,却受限于电池寿命,因此迫切需要环境能量收集技术以实现长期稳定的电力供应。本文旨在探索和开发一种新型的压电能量收集器,以期利用压电梁和弹性支撑球之间的耦合效应,实现多方向风能的有效捕获和转换。 创新点:1.提出利用压电梁和弹性支撑球之间的耦合效应来捕获风能的新方法;2.基于欧拉-拉格朗日方程开发非线性耦合动力学理论模型;3.通过实验验证耦合系统的动态模型,并研究频率比对输出性能的影响;4.研究来流角度对电气性能的影响,体现其在复杂环境中的潜在应用价值。 方法:1.利用压电梁和弹性支撑球的耦合效应设计能量收集器;2.建立基于欧拉-拉格朗日方程的非线性耦合动力学理论模型;3.通过实验验证理论模型,并进行Galerkin离散化分析;4.通过在风洞中调整收集器与来流风向之间的角度,测试不同来流方向下的电气性能。 结论:1.提出了弹性支撑球与压电梁耦合的球体涡激振动能量采集系统,且开发的动力学理论模型得到了实验验证;2.该俘能器可以有效的俘获多个来流方向的风能,且峰值输出电压相差不超过5%;3.理论和实验结果表明,球体固有频率与压电梁固有频率之比为1.34时可达到最大输出功率,且3.9 m/s风速时平均输出功率约为190 μW。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BeharaS, SotiropoulosF, 2016. Vortex-induced vibrations of an elastically mounted sphere: the effects of Reynolds number and reduced velocity. Journal of Fluids and Structures, 66:54-68. ![]() [2]ChenS, WangCH, ZhaoLY, 2023. A two-degree-of-freedom aeroelastic energy harvesting system with coupled vortex-induced-vibration and wake galloping mechanisms. Applied Physics Letters, 122(6):063901. ![]() [3]DaiHL, AbdelkefiA, WangL, 2014. Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations. Journal of Intelligent Material Systems and Structures, 25(14):1861-1874. ![]() [4]FacchinettiML, de LangreE, BiolleyF, 2004. Coupling of structure and wake oscillators in vortex-induced vibrations. Journal of Fluids and Structures, 19(2):123-140. ![]() [5]GovardhanR, WilliamsonCHK, 1997. Vortex-induced motions of a tethered sphere. Journal of Wind Engineering and Industrial Aerodynamics, 69-71:375-385. ![]() [6]HeLP, LiuL, ZhouJW, et al., 2022. Design and analysis of a double-acting nonlinear wideband piezoelectric energy harvester under plucking and collision. Energy, 239:122370. ![]() [7]HuGB, LiangJR, LanCB, et al., 2020. A twist piezoelectric beam for multi-directional energy harvesting. Smart Materials and Structures, 29(11):11LT01. ![]() [8]HuangDM, HanJL, LiW, et al., 2023. Responses, optimization and prediction of energy harvesters under galloping and base excitations. Communications in Nonlinear Science and Numerical Simulation, 119:107086. ![]() [9]HuangSF, LuoWH, ZhuZM, et al., 2023. Experimental and theoretical analysis of a hybrid vibration energy harvester with integrated piezoelectric and electromagnetic interaction. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 24(11):991-1002. ![]() [10]JiaJD, ShanXB, UpadrashtaD, et al., 2020. An asymmetric bending-torsional piezoelectric energy harvester at low wind speed. Energy, 198:117287. ![]() [11]MachadoLQ, YurchenkoD, WangJL, et al., 2021. Multi-dimensional constrained energy optimization of a piezoelectric harvester for E-gadgets. iScience, 24(7):102749. ![]() [12]NegriM, MiraudaD, MalavasiS, 2018. VIV trajectories of an elastically mounted sphere. Applied Ocean Research, 70:62-75. ![]() [13]RajamuniMM, ThompsonMC, HouriganK, 2018. Vortex-induced vibration of a transversely rotating sphere. Journal of Fluid Mechanics, 847:786-820. ![]() [14]RajamuniMM, ThompsonMC, HouriganK, 2019. Vortex-induced vibration of elastically-mounted spheres: a comparison of the response of three degrees of freedom and one degree of freedom systems. Journal of Fluids and Structures, 89:142-155. ![]() [15]RajamuniMM, ThompsonMC, HouriganK, 2020. Vortex dynamics and vibration modes of a tethered sphere. Journal of Fluid Mechanics, 885:A10. ![]() [16]RazaSA, ChernMJ, SusantoH, et al., 2020. Numerical investigation of the effects of a small fixed sphere in tandem arrangement on VIV of a sphere. Journal of Wind Engineering and Industrial Aerodynamics, 206:104368. ![]() [17]SareenA, ZhaoJ, Lo JaconoD, et al., 2018. Vortex-induced vibration of a rotating sphere. Journal of Fluid Mechanics, 837:258-292. ![]() [18]SuC, GaoX, LiuKJ, et al., 2023. Recent advances of ionic liquids in zinc ion batteries: a bibliometric analysis. Green Energy and Intelligent Transportation, 2(5):100126. ![]() [19]TaoJL, HuJ, 2016. Energy harvesting from pavement via polyvinylidene fluoride: hybrid piezo-pyroelectric effects. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 17(7):502-511. ![]() [20]WangJL, HuGB, SuZ, et al., 2019. A cross-coupled dual-beam for multi-directional energy harvesting from vortex induced vibrations. Smart Materials and Structures, 28(12):12LT02. ![]() [21]WangJL, GengLF, DingL, et al., 2020. The state-of-the-art review on energy harvesting from flow-induced vibrations. Applied Energy, 267:114902. ![]() [22]WangJL, YurchenkoD, HuGB, et al., 2021a. Perspectives in flow-induced vibration energy harvesting. Applied Physics Letters, 119(10):100502. ![]() [23]WangJL, SunSK, TangLH, et al., 2021b. On the use of metasurface for vortex-induced vibration suppression or energy harvesting. Energy Conversion and Management, 235:113991. ![]() [24]WangJL, WangYQ, HuGB, 2022. Investigation of hybridized bluff bodies for flow-induced vibration energy harvesting. Journal of Physics D: Applied Physics, 55(48):484001. ![]() [25]WilliamsonCHK, GovardhanR, 1997. Dynamics and forcing of a tethered sphere in a fluid flow. Journal of Fluids and Structures, 11(3):293-305. ![]() [26]WuN, BaoB, WangQ, 2021. Review on engineering structural designs for efficient piezoelectric energy harvesting to obtain high power output. Engineering Structures, 235:112068. ![]() [27]WuZH, XuQS, 2022. Design of a structure-based bistable piezoelectric energy harvester for scavenging vibration energy in gravity direction. Mechanical Systems and Signal Processing, 162:108043. ![]() [28]XiaGH, ZhangS, KangXF, et al., 2023. Performance analysis of nonlinear piezoelectric energy harvesting system under bidirectional excitations. Composite Structures, 324:117529. ![]() [29]XieYL, LiBB, GuoJ, 2020. Bayesian operational modal analysis of a long-span cable-stayed sea-crossing bridge. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(7):553-564. ![]() [30]ZhangLB, AbdelkefiA, DaiHL, et al., 2017. Design and experimental analysis of broadband energy harvesting from vortex-induced vibrations. Journal of Sound and Vibration, 408:210-219. ![]() [31]ZhangLB, DaiHL, AbdelkefiA, et al., 2019. Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections. Energy, 167:970-981. ![]() [32]ZhouLR, ChenL, XiaY, et al., 2020. Temperature-induced structural static responses of a long-span steel box girder suspension bridge. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 21(7):580-592. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>