CLC number:
On-line Access: 2025-05-30
Received: 2024-08-19
Revision Accepted: 2024-09-23
Crosschecked: 2025-05-30
Cited: 0
Clicked: 622
Hanyu CHEN, Peng GUO, Guangyao LI, Lifeng FAN. Grid-growth method for the reconstruction of 3D rock joints with arbitrary joint roughness and persistence[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400407 @article{title="Grid-growth method for the reconstruction of 3D rock joints with arbitrary joint roughness and persistence", %0 Journal Article TY - JOUR
重构任意节理粗糙度和贯通度三维岩石节理的网格生长方法机构:北京工业大学,建筑与土木工程学院,中国北京,100124 目的:岩石节理面的形貌对节理岩体的力学特性具有重要的影响。本文旨在提出一种重构真实三维岩石节理形貌的方法,实现快速重构任意节理粗糙度和贯通度下的三维岩石节理,为节理岩体力学特性分析提供更为精确的模型。 创新点:1.提出一种三维岩石节理重构的网格生长法;2.同时考虑三维岩石节理的节理粗糙度和贯通度;3.基于该方法成功重构人工劈裂节理。 方法:1.将节理模型划分为均匀的网格,通过调整网格位置,重构具有任意节理粗糙度和贯通度的岩石节理模型(图1~3);2.建立不同节理粗糙度和贯通度的岩石节理模型,研究相关参数(如凸体的数量、高度和坡度,以及岩桥的数量和面积)对节理粗糙度系数(JRC)和贯通度的影响(图4~8);3.重构人工劈裂节理,通过对比重构模型的JRC与人工劈裂节理的JRC,验证所提方法的准确性和有效性(图9~11)。 结论:1.本方法可以通过调节凸体的数量、高度和坡度来有效控制模型的节理粗糙度;2.本方法可以通过调节岩桥的数量和面积来有效控制模型的节理贯通度;3.基于本方法重构的节理模型与人工劈裂节理模型在节理粗糙度上吻合良好,本方法在三维岩石节理重构方面具有较高的准确性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AskariM, AhmadiM, 2007. Failure process after peak strength of artificial joints by fractal dimension. Geotechnical and Geological Engineering, 25(6):631-637. ![]() [2]BaeDS, KimKS, KohYK, et al., 2011. Characterization of joint roughness in granite by applying the scan circle technique to images from a borehole televiewer. Rock Mechanics and Rock Engineering, 44(4):497-504. ![]() [3]BahaaddiniM, HaganP, MitraR, et al., 2016. Numerical study of the mechanical behavior of nonpersistent jointed rock masses. International Journal of Geomechanics, 16(1):04015035. ![]() [4]BartonN, ChoubeyV, 1977. The shear strength of rock joints in theory and practice. Rock Mechanics, 10(1-2):1-54. ![]() [5]CaoRH, YaoRB, LinH, et al., 2022. Shear behaviour of 3D nonpersistent jointed rock-like specimens: experiment and numerical simulation. Computers and Geotechnics, 148:104858. ![]() [6]CattaniaC, SegallP, 2021. Precursory slow slip and foreshocks on rough faults. Journal of Geophysical Research: Solid Earth, 126(4):e2020JB020430. ![]() [7]EinsteinHH, VenezianoD, BaecherGB, et al., 1983. The effect of discontinuity persistence on rock slope stability. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(5):227-236. ![]() [8]FanLF, QiuB, GaoJW, et al., 2023. A real-time visual investigation on microscopic progressive fatigue deterioration of granite under cyclic loading. Rock Mechanics and Rock Engineering, 56:5133-5147. ![]() [9]FanLF, YangQH, DuXL, 2024. Spalling characteristics of high-temperature treated granitic rock at different strain rates. Journal of Rock Mechanics and Geotechnical Engineering, 16(4):1280-1288. ![]() [10]GaoYN, WongLNY, 2015. A modified correlation between roughness parameter Z2 and the JRC. Rock Mechanics and Rock Engineering, 48(1):387-396. ![]() [11]GhazvinianA, SarfaraziV, SchubertW, et al., 2012. A study of the failure mechanism of planar non-persistent open joints using PFC2D. Rock Mechanics and Rock Engineering, 45(5):677-693. ![]() [12]GuanD, WuJH, JingL, 2015. A statistical method for predicting sound absorbing property of porous metal materials by using quartet structure generation set. Journal of Alloys and Compounds, 626:29-34. ![]() [13]HuangD, TangW, LiXQ, 2023. Numerical modeling and damage evolution research on the effect of joint geometrical parameters in nonpersistent jointed rock masses. Bulletin of Engineering Geology and the Environment, 82(4):137. ![]() [14]HuangJY, XuSL, HuSS, 2014. Numerical investigations of the dynamic shear behavior of rough rock joints. Rock Mechanics and Rock Engineering, 47(5):1727-1743. ![]() [15]JiangQ, FengXT, GongYH, et al., 2016. Reverse modelling of natural rock joints using 3D scanning and 3D printing. Computers and Geotechnics, 73:210-220. ![]() [16]Jimenez-RodriguezR, SitarN, 2006. Inference of discontinuity trace length distributions using statistical graphical models. International Journal of Rock Mechanics and Mining Sciences, 43(6):877-893. ![]() [17]KimBH, CaiM, KaiserPK, et al., 2007. Estimation of block sizes for rock masses with non-persistent joints. Rock Mechanics and Rock Engineering, 40(2):169-192. ![]() [18]LangYX, LiangZZ, DongZ, 2024. Three-dimensional finite element simulation and reconstruction of jointed rock models using CT scanning and photogrammetry. Journal of Rock Mechanics and Geotechnical Engineering, 16(4):1348-1361. ![]() [19]LêHK, HuangWC, LiaoMC, et al., 2018. Spatial characteristics of rock joint profile roughness and mechanical behavior of a randomly generated rock joint. Engineering Geology, 245:97-105. ![]() [20]LeiQH, LathamJP, TsangCF, 2017. The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, 85:151-176. ![]() [21]LiuQS, TianYC, LiuDF, et al., 2017. Updates to JRC-JCS model for estimating the peak shear strength of rock joints based on quantified surface description. Engineering Geology, 228:282-300. ![]() [22]LiuRC, JiangYJ, LiB, et al., 2015. A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks. Computers and Geotechnics, 65:45-55. ![]() [23]LiuSL, WangCS, DuSG, et al., 2022. 3D morphology reconstruction of rock joints from 2D profile measurement by a profilograph. Measurement, 203:112008. ![]() [24]LiuXG, ZhuWC, LiuYX, et al., 2022. Reconstruction of rough rock joints: 2D profiles and 3D surfaces. International Journal of Rock Mechanics and Mining Sciences, 156:105113. ![]() [25]LiuZQ, ZhengLL, ZuoYJ, et al., 2024. Investigation of three-dimensional model reconstruction and fractal characteristics of crack propagation in jointed sandstone. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 10(1):75. ![]() [26]NieZH, WangX, HuangDL, et al., 2019. Fourier-shape-based reconstruction of rock joint profile with realistic unevenness and waviness features. Journal of Central South University, 26(11):3103-3113. ![]() [27]OlssonO, FalkL, ForslundO, et al.,1992. Borehole radar applied to the characterization of hydraulically conductive fracture zones in crystalline rock. Geophysical Prospecting, 40(2):109-142. ![]() [28]PrudencioM, van Sint JanM, 2007. Strength and failure modes of rock mass models with non-persistent joints. International Journal of Rock Mechanics and Mining Sciences, 44(6):890-902. ![]() [29]QiuB, FanLF, DuXL, 2025. Microstructure deterioration of sandstone under freeze-thaw cycles using CT technology: the effects of different water immersion conditions. Journal of Rock Mechanics and Geotechnical Engineering, 17(3):1599-1611. ![]() [30]ShangJ, WestLJ, HencherSR, et al., 2018. Geological discontinuity persistence: implications and quantification. Engineering Geology, 241:41-54. ![]() [31]SongJJ, 2006. Estimation of areal frequency and mean trace length of discontinuities observed in non-planar surfaces. Rock Mechanics and Rock Engineering, 39(2):131-146. ![]() [32]SturzeneggerM, SteadD, 2009. Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Natural Hazards and Earth System Sciences, 9(2):267-287. ![]() [33]TronickeJ, KnollMD, 2005. Vertical radar profiling: influence of survey geometry on first-arrival traveltimes and amplitudes. Journal of Applied Geophysics, 57(3):179-191. ![]() [34]TseR, CrudenDM, 1979. Estimating joint roughness coefficients. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16(5):303-307. ![]() [35]WangMR, WangJK, PanN, et al., 2007. Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Physical Review E, 75(3):036702. ![]() [36]WangQF, LiCW, ZhaoYC, et al., 2020. Study of gas emission law at the heading face in a coal-mine tunnel based on the Lattice Boltzmann method. Energy Science & Engineering, 8(5):1705-1715. ![]() [37]WangXG, JiaZX, ChenZY, et al., 2016. Determination of discontinuity persistent ratio by Monte-Carlo simulation and dynamic programming. Engineering Geology, 203:83-98. ![]() [38]WasanthaPLP, RanjithPG, XuT, et al., 2014. A new parameter to describe the persistency of non-persistent joints. Engineering Geology, 181:71-77. ![]() [39]WillenbergH, LoewS, EberhardtE, et al., 2008. Internal structure and deformation of an unstable crystalline rock mass above Randa (Switzerland): part I–internal structure from integrated geological and geophysical investigations. Engineering Geology, 101(1-2):1-14. ![]() [40]WuQ, KulatilakePHSW, TangHM, 2011. Comparison of rock discontinuity mean trace length and density estimation methods using discontinuity data from an outcrop in Wenchuan area, China. Computers and Geotechnics, 38(2):258-268. ![]() [41]XueDJ, LiuYT, ZhouHW, et al., 2020. Fractal characterization on anisotropy and fractal reconstruction of rough surface of granite under orthogonal shear. Rock Mechanics and Rock Engineering, 53(3):1225-1242. ![]() [42]YangQH, FanLF, DuXL, 2025. Split short Hopkinson pressure bar (SSHPB) for the dynamic compression of sandstone under different strain rates. Journal of Rock Mechanics and Geotechnical Engineering, in press. ![]() [43]YongR, YeJ, LiB, et al., 2018. Determining the maximum sampling interval in rock joint roughness measurements using Fourier series. International Journal of Rock Mechanics and Mining Sciences, 101:78-88. ![]() [44]ZhangXB, JiangQH, ChenN, et al., 2016. Laboratory investigation on shear behavior of rock joints and a new peak shear strength criterion. Rock Mechanics and Rock Engineering, 49(9):3495-3512. ![]() [45]ZhaoLH, HuangDL, ChenJY, et al., 2020. A practical photogrammetric workflow in the field for the construction of a 3D rock joint surface database. Engineering Geology, 279:105878. ![]() [46]ZhouHW, XieH, 2003. Direct estimation of the fractal dimensions of a fracture surface of rock. Surface Review and Letters, 10(5):751-762. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>