
CLC number:
On-line Access: 2026-01-26
Received: 2024-08-24
Revision Accepted: 2025-03-17
Crosschecked: 2026-01-27
Cited: 0
Clicked: 1646
Zhe XIONG, Yupeng YUAN, Liang TONG, Jianshu CHU, Boyang SHEN. Optimal hierarchical control of speed and energy usage for hybrid ships considering navigational environment[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400413 @article{title="Optimal hierarchical control of speed and energy usage for hybrid ships considering navigational environment", %0 Journal Article TY - JOUR
考虑通航环境的混合动力船舶航速与能量管理的分层优化控制机构:1武汉理工大学,水路交通控制全国重点实验室,中国武汉,430063;2武汉理工大学,国家水运安全工程技术研究中心,中国武汉,430063;3武汉理工大学,交通与物流工程学院,可靠性工程研究所,中国武汉,430063;4中远海运重工有限公司,中国上海,200135;5剑桥大学,工程系,英国剑桥,CB3 0FA 目的:船舶在实际运行中往往处于动态变化的通航环境,可能导致能量分配在实际航行中的滞后或不匹配,从而影响燃油经济性和电量状态(SOC)的维持性。本文旨在研究一种能够适应动态工况变化的等效因子动态调整机制,以更高效地实现瞬时优化,并提高复杂通航环境下的能量分配适应性。 创新点:1.利用径向基函数(RBF)网络结合通航环境预测船舶推进电机转速,并提出模型预测控制(MPC)方法优化船舶航速;2.根据转速变化动态调整等效因子,形成工况自适应能量管理策略。 方法:1.利用RBF网络结合船舶通航环境预测船舶推进电机转速,通过多组实验得出合理的预测时域(图9),并以最小化能效运行指标(EEOI)为目标利用MPC方法优化船舶推进电机转速(图10);2.改进等效油耗策略(ECMS)中等效因子的计算公式,通过PI控制模块动态调整等效因子,并利用超级电容的SOC反馈消除系统稳态误差,以增强控制系统的适应性;3.自适应ECMS控制模块通过动态等效因子的调节,在柴油发电机和超级电容之间优化能量分配,实现船舶推进功率的精确控制和燃油经济性的提升(公式(28))。 结论:1.基于MPC的航速优化方法在提高航行效率和节能方面表现优越,可缩短航行时间约2.59%,降低EEOI约11.61%,同时可平缓推进电机转速变化;2.提出的工况自适应ECMS策略相较传统方法在降低燃油消耗(最多约9.47%)和减小柴油发电机负载波动方面更具优势,提高了能量管理系统的适应性与稳定性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BalsamoF, CapassoC, MiccioneG, et al., 2017. Hybrid storage system control strategy for all-electric powered ships. Energy Procedia, 126:1083-1090. ![]() [2]BassamAM, PhillipsAB, TurnockSR, et al., 2017. Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship. International Journal of Hydrogen Energy, 42(1):623-635. ![]() [3]CarltonJS, 2018. Marine Propellers and Propulsion. 4th Edition. Elsevier, Amsterdam, the Netherlands. ![]() [4]ChenZH, LiuYG, ZhangYJ, et al., 2022. A neural network-based ECMS for optimized energy management of plug-in hybrid electric vehicles. Energy, 243:122727. ![]() [5]GaoSC, ZongYH, JuF, et al., 2024. Scenario-oriented adaptive ECMS using speed prediction for fuel cell vehicles in real-world driving. Energy, 304:132028. ![]() [6]GeertsmaRD, NegenbornRR, VisserK, et al., 2017. Pitch control for ships with diesel mechanical and hybrid propulsion: modelling, validation and performance quantification. Applied Energy, 206:1609-1631. ![]() [7]GuoLL, GaoBZ, GaoY, et al., 2017. Optimal energy management for HEVs in eco-driving applications using bi-level MPC. IEEE Transactions on Intelligent Transportation Systems, 18(8):2153-2162. ![]() [8]HanL, JiaoXH, ZhangZ, 2020. Recurrent neural network-based adaptive energy management control strategy of plug-in hybrid electric vehicles considering battery aging. Energies, 13(1):202. ![]() [9]HasanvandS, RafieiM, GheisarnejadM, et al., 2020. Reliable power scheduling of an emission-free ship: multiobjective deep reinforcement learning. IEEE Transactions on Transportation Electrification, 6(2):832-843. ![]() [10]HeinK, XuY, WilsonG, et al., 2021. Coordinated optimal voyage planning and energy management of all-electric ship with hybrid energy storage system. IEEE Transactions on Power Systems, 36(3):2355-2365. ![]() [11]HoltropJ, 1984. A statistical re-analysis of resistance and propulsion data. International Shipbuilding Progress, 31(363):272-276. ![]() [12]HoltropJ, MennenGGJ, 1982. An approximate power prediction method. International Shipbuilding Progress, 29(335):166-170. ![]() [13]HouJ, SunJ, HofmannHF, 2018. Mitigating power fluctuations in electric ship propulsion with hybrid energy storage system: design and analysis. IEEE Journal of Oceanic Engineering, 43(1):93-107. ![]() [14]HouJ, YaoDW, WuF, et al., 2021. Online vehicle velocity prediction using an adaptive radial basis function neural network. IEEE Transactions on Vehicular Technology, 70(4):3113-3122. ![]() [15]IMO (International Maritime Organization), 2023. 2023 IMO Strategy on Reduction of GHG Emissions from Ships. IMO. ![]() [16]KalikatzarakisM, GeertsmaRD, BoonenEJ, et al., 2018. Ship energy management for hybrid propulsion and power supply with shore charging. Control Engineering Practice, 76:133-154. ![]() [17]KhanMMSK, FaruqueMO, NewazA, 2017. Fuzzy logic based energy storage management system for MVDC power system of all electric ship. IEEE Transactions on Energy Conversion, 32(2):798-809. ![]() [18]LiYP, WangF, TangXL, et al., 2022. Real-time multiobjective energy management for electrified powertrains: a convex optimization-driven predictive approach. IEEE Transactions on Transportation Electrification, 8(3):3139-3150. ![]() [19]LiuCX, LiXY, ChenY, et al., 2023. Real-time energy management strategy for fuel cell/battery vehicle based on speed prediction DP solver model predictive control. Journal of Energy Storage, 73:109288. ![]() [20]LiuH, WangYC, GaoDJ, 2021. Research on control strategy of hybrid electric ship based on minimum equivalent fuel consumption. IOP Conference Series: Earth and Environmental Science, 632:032029. ![]() [21]LiuYS, GeYS, TanJW, et al., 2018. Emission characteristics of offshore fishing ships in the Yellow Bo Sea, China. Journal of Environmental Sciences, 65:83-91. ![]() [22]SulligoiG, VicenzuttiA, MenisR, 2016. All-electric ship design: from electrical propulsion to integrated electrical and electronic power systems. IEEE Transactions on Transportation Electrification, 2(4):507-521. ![]() [23]TianX, HeR, SunXD, et al., 2020. An ANFIS-based ECMS for energy optimization of parallel hybrid electric bus. IEEE Transactions on Vehicular Technology, 69(2):1473-1483. ![]() [24]UNCTAD (United Nations Conference on Trade and Development), 2022. Review of Maritime Transport 2022: Navigating Stormy Waters. United Nations Publications. ![]() [25]WuP, PartridgeJ, BucknallR, 2020. Cost-effective reinforcement learning energy management for plug-in hybrid fuel cell and battery ships. Applied Energy, 275:115258. ![]() [26]XiePL, TanS, GuerreroJM, et al., 2021. MPC-informed ECMS based real-time power management strategy for hybrid electric ship. Energy Reports, 7(S1):126-133. ![]() [27]ZahediB, NorumLE, LudvigsenKB, 2014. Optimized efficiency of all-electric ships by dc hybrid power systems. Journal of Power Sources, 255:341-354. ![]() [28]ZhangN, MaXH, JinLM, 2017. Energy management for parallel HEV based on PMP algorithm. The 2nd International Conference on Robotics and Automation Engineering (ICRAE), p.177-182. ![]() [29]ZhuJY, ChenL, WangXF, et al., 2020. Bi-level optimal sizing and energy management of hybrid electric propulsion systems. Applied Energy, 260:114134. ![]() [30]ZhuLS, HanJG, PengDK, et al., 2014. Fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid ship. The 1st International Conference on Green Energy, p.107-112. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>