
CLC number:
On-line Access: 2025-10-25
Received: 2024-11-28
Revision Accepted: 2025-01-03
Crosschecked: 2025-10-27
Cited: 0
Clicked: 1802
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0001-8656-3514
Xufeng LI, Jien MA, Ping TAN, Lanfen LIN, Lin QIU, Youtong FANG. Self-attention and convolutional feature fusion for real-time intelligent fault detection of high-speed railway pantographs[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2400549 @article{title="Self-attention and convolutional feature fusion for real-time intelligent fault detection of high-speed railway pantographs", %0 Journal Article TY - JOUR
基于自注意力和卷积特征融合的高铁受电弓实时智能故障检测机构:1浙江大学,电气工程学院,中国杭州,310027;2浙江科技大学,自动化与电气工程学院,310023;3浙江大学,计算机科学与技术学院,中国杭州,310027 目的:由于高铁运行工况复杂,对受电弓故障的实时检测监测技术存在较大难点。本文旨在基于受电弓监控视频,研究实时智能故障检测方法,以期及时发现故障,保障列车安全运行。 创新点:1.将自注意力和卷积特征相结合,提高了卷积网络的特征提取性能,使其在复杂场景中准确识别受电弓。2.构建轻量级的多尺度特征提取和故障检测模型,满足实时检测的要求;减少网络参数,提高了模型推理速度。3.针对列车的日常运行,建立了一套完整、准确的高速铁路受电弓故障检测方案。 方法:整个模型由两个子模型组成,即多尺度特征提取模型和受电弓故障检测模型。针对受电弓故障样本数量少的问题,该方法设计如下:首先,设计轻量化多尺度特征提取网络模型,并利用大量的正常受电弓视频图像数据学习各部件的特征;然后,构建正常受电弓部件的特征样本库;最后,通过匹配正常样本库计算其置信度来检测受电弓故障。 结论:1.本文提出的基于自注意力特征与卷积特征融合的轻量级深度学习模型实现了对受电弓关键部件的实时、高精度识别。2.实验表明,融合模块可以有效地提高原卷积网络的性能,且在训练集和测试集上均取得了较高的查全率和查准率,证明算法模型具有良好的性能。3.设计了受电弓故障检测模型,实现了快速、智能的故障检测,且能够准确识别出测试集中的所有故障。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BochkovskiyA, WangCY, LiaoHYM, 2020. YOLOV4: optimal speed and accuracy of object detection. arXiv: 2004.10934. ![]() [2]ChenRC, LinYZ, JinT, 2022. High-speed railway pantograph-catenary anomaly detection method based on depth vision neural network. IEEE Transactions on Instrumentation and Measurement, 71:1502710. ![]() [3]DengQH, ChenYG, ZhangYP, 2022. Research on wear detection of pantograph slide plate based on high speed 3D structured light detection. Engineering and Technological Research, 7(12):15-19 (in Chinese). ![]() [4]DingXH, ZhangXY, MaNN, et al., 2021. RepVGG: making VGG-style ConvNets great again. IEEE/CVF Conference on Computer Vision and Pattern Recognition, p.13728-13737. ![]() [5]DosovitskiyA, BeyerL, KolesnikovA, et al., 2021. An image is worth 16×16 words: transformers for image recognition at scale. International Conference on Learning Representations. ![]() [6]FangYT, MaJE, 2023. High-speed railway transport technology. Journal of Zhejiang University-SCIENCE A, 24(3):173-176. ![]() [7]GuoJY, HanK, WuH, et al., 2022. CMT: convolutional neural networks meet vision transformers. IEEE/CVF Conference on Computer Vision and Pattern Recognition, p.12165-12175. ![]() [8]HaoK, ChenGK, ZhaoL, et al., 2022. An insulator defect detection model in aerial images based on multiscale feature pyramid network. IEEE Transactions on Instrumentation and Measurement, 71:3522412. ![]() [9]HeKM, ZhangXY, RenSQ, et al., 2016. Deep residual learning for image recognition. IEEE Conference on Computer Vision and Pattern Recognition, p.770-778. ![]() [10]HeT, ZhangZ, ZhangH, et al., 2019. Bag of tricks for image classification with convolutional neural networks. IEEE/CVF Conference on Computer Vision and Pattern Recognition, p.558-567. ![]() [11]HuTY, MaHM, LiuH, et al., 2022. Self-attention-based machine theory of mind for electric vehicle charging demand forecast. IEEE Transactions on Industrial Informatics, 18(11):8191-8202. ![]() [12]KaradumanG, AkinE, 2022. A new approach based on predictive maintenance using the fuzzy classifier in pantograph-catenary systems. IEEE Transactions on Intelligent Transportation Systems, 23(5):4236-4246. ![]() [13]KrizhevskyA, SutskeverI, HintonGE, 2017. Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6):84-90. ![]() [14]LiD, PanX, FuZZ, et al., 2022. Real-time accurate deep learning-based edge detection for 3-D pantograph pose status inspection. IEEE Transactions on Instrumentation and Measurement, 71:5001012. ![]() [15]LinTY, DollárP, GirshickR, et al., 2017. Feature pyramid networks for object detection. IEEE Conference on Computer Vision and Pattern Recognition, p.936-944. ![]() [16]LiuWJ, ZhaoJ, WangSF, 2021. Pantograph slide thickness detection method research based on machine vision. Electronic Measurement Technology, 44(24):128-133 (in Chinese). ![]() [17]MoXF, WangKL, PanCQ, et al., 2022. Intelligent defect-detection technology of pantograph pan based on the image from railway 5C device. China Railway, (2):148-155 (in Chinese). ![]() [18]MuZH, QinY, YuCC, et al., 2023. Adaptive cropping shallow attention network for defect detection of bridge girder steel using unmanned aerial vehicle images. Journal of Zhejiang University-SCIENCE A, 24(3):243-256. ![]() [19]NiXF, MaZJ, LiuJW, et al., 2022. Attention network for rail surface defect detection via consistency of intersection-over-union (IoU)-guided center-point estimation. IEEE Transactions on Industrial Informatics, 18(3):1694-1705. ![]() [20]PanXR, GeCJ, LuR, et al., 2022. On the integration of self-attention and convolution. IEEE/CVF Conference on Computer Vision and Pattern Recognition, p.805-815. ![]() [21]SimonyanK, ZissermanA, 2015. Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations, p.1-14. ![]() [22]TanBK, WangD, ShiJL, et al., 2024. Temperature field prediction of steel-concrete composite decks using TVFEMD-stacking ensemble algorithm. Journal of Zhejiang University-SCIENCE A, 25(9):732-748. ![]() [23]TanP, MaJE, ZhouJ, et al., 2016. Sustainability development strategy of China’s high speed rail. Journal of Zhejiang University-SCIENCE A, 17(12):923-932. ![]() [24]TanP, LiXF, XuJM, et al., 2020. Catenary insulator defect detection based on contour features and gray similarity matching. Journal of Zhejiang University-SCIENCE A, 21(1):64-73. ![]() [25]TanP, LiXF, WuZG, et al., 2021. Multialgorithm fusion image processing for high speed railway dropper failure-defect detection. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 51(7):4466-4478. ![]() [26]TanP, LiXF, DingJ, et al., 2022. Mask R-CNN and multifeature clustering model for catenary insulator recognition and defect detection. Journal of Zhejiang University-SCIENCE A, 23(9):745-756. ![]() [27]VaswaniA, ShazeerN, ParmarN, et al., 2017. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems, p.6000-6010. ![]() [28]WangWH, XieEZ, SongXG, et al., 2019. Efficient and accurate arbitrary-shaped text detection with pixel aggregation network. IEEE/CVF International Conference on Computer Vision, p.8439-8448. ![]() [29]WeiXK, JiangSY, LiY, et al., 2020. Defect detection of pantograph slide based on deep learning and image processing technology. IEEE Transactions on Intelligent Transportation Systems, 21(3):947-958. ![]() [30]WenYT, ChengJX, RenYX, et al., 2024. Complex defects detection of 3-D-printed lattice structures: accuracy and scale improvement in YOLO V7. IEEE Transactions on Instrumentation and Measurement, 73:5013209. ![]() [31]WooS, ParkJ, LeeJY, et al., 2018. CBAM: convolutional block attention module. The 15th European Conference on Computer Vision, p.3-19. ![]() [32]WuY, FuHR, BianXC, et al., 2023. Impact of extreme climate and train traffic loads on the performance of high-speed railway geotechnical infrastructures. Journal of Zhejiang University-SCIENCE A, 24(3):189-205. ![]() [33]XieSN, GirshickR, DollárP, et al., 2017. Aggregated residual transformations for deep neural networks. IEEE Conference on Computer Vision and Pattern Recognition, p.5987-5995. ![]() [34]YaoH, LiuYH, LiX, et al., 2022. A detection method for pavement cracks combining object detection and attention mechanism. IEEE Transactions on Intelligent Transportation Systems, 23(11):22179-22189. ![]() [35]ZhengZH, WangP, LiuW, et al., 2020. Distance-IoU loss: faster and better learning for bounding box regression. Proceedings of the AAAI Conference on Artificial Intelligence, p.12993-13000. ![]() [36]ZhouN, ZhangWH, LiRP, 2011. Dynamic performance of a pantograph-catenary system with the consideration of the appearance characteristics of contact surfaces. Journal of Zhejiang University-SCIENCE A, 12(12):913-920. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>