CLC number: S823
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2015-05-25
Cited: 7
Clicked: 5662
Citations: Bibtex RefMan EndNote GB/T7714
Hai-na Gao, Han Hu, Nan Zheng, Jia-qi Wang. Leucine and histidine independently regulate milk protein synthesis in bovine mammary epithelial cells via mTOR signaling pathway[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B1400337 @article{title="Leucine and histidine independently regulate milk protein synthesis in bovine mammary epithelial cells via mTOR signaling pathway", %0 Journal Article TY - JOUR
亮氨酸和组氨酸通过mTOR信号通路调控奶牛腺上皮细胞中酪蛋白的合成创新点:首次在CMEC-H模型中研究不同浓度的亮氨酸和组氨酸通过mTOR复合物1(mTORC1)中mTOR(Ser2481)、mTOR调控蛋白(Raptor,Ser792)和G蛋白β亚基样蛋白(GβL)对酪蛋白表达调控的影响。研究证明mTOR(Ser2448)并不是在乳腺上皮细胞中激活mTOR信号通路的唯一磷酸化位点,mTOR(Ser2481)同样可作为激活mTOR信号通路的生物标记。 方法:以厄尔平衡溶液代替培养基,设为阴性对照,分别添加不同浓度的亮氨酸或组氨酸,利用Westernblotting检测酪蛋白和mTOR信号路径元件的蛋白表达。 结论:与阴性对照组相比,当在CMEC-H细胞中添加0.45~10.80mmol/L亮氨酸6h时,4种酪蛋白的表达和mTOR(Ser2481)、Raptor(Ser792)、真核翻译起始因子4E(eIF4E,Ser209)和真核细胞翻译延伸因子(eEF2,Thr56)的磷酸化表达均显著上调(P<0.01)。而当亮氨酸浓度在10.80mmol/L时,真核翻译起始因子4E结合蛋白1(4EBP1,Thr37)的磷酸化表达被抑制;在5.40~10.80mmol/L时,核糖体蛋白S6(RPS6,Ser235/236)的磷酸化被抑制。当添加0.15~9.60mmol/L组氨酸6h时,αs2-酪蛋白、β-酪蛋白、κ-酪蛋白的表达和mTOR(Ser2481)、Raptor(Ser792)、核糖体S6蛋白激酶(S6K1,Thr389)、4EBP1(Thr37)、eIF4E(Ser209)和eEF2(Thr56)的磷酸化表达均显著上调(P<0.01)。而当组氨酸浓度在9.60mmol/L时,αs1-酪蛋白的表达量降低;在0.15和9.60mmol/L时,GβL被抑制;在4.80~9.60mmol/L时,RPS6磷酸化被抑制。线性回归模型显示,当添加亮氨酸时,αs1-酪蛋白的表达与mTOR、S6K1和eEF2的磷酸化表达成显著的正相关(P<0.01;表4);当添加组氨酸,β-酪蛋白和κ-酪蛋白均与eEF2磷酸化表达成显著的正相关(P<0.01;表5)。综上所述,在乳腺上皮细胞中,亮氨酸和组氨酸能通过mTOR信号通路促进酪蛋白基因的表达。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Appuhamy, J.A., Knapp, J.R., Becvar, O., et al., 2011a. Effects of jugular-infused lysine, methionine, and branched-chain amino acids on milk protein synthesis in high-producing dairy cows. J. Dairy Sci., 94(4):1952-1960. ![]() [2]Appuhamy, J.A., Bell, A.L., Nayananjalie, W.A., et al., 2011b. Essential amino acids regulate both initiation and elongation of mRNA translation independent of insulin in MAC-T cells and bovine mammary tissue slices. J. Nutr., 141(6):1209-1215. ![]() [3]Appuhamy, J.A., Knoebel, N.A., Nayananjalie, W.A., et al., 2012. Isoleucine and leucine independently regulate mTOR signaling and protein synthesis in MAC-T cells and bovine mammary tissue slices. J. Nutr., 142(3):484-491. ![]() [4]Appuhamy, J., Nayananjalie, W.A., England, E.M., et al., 2014. Effects of AMP-activated protein kinase (AMPK) signaling and essential amino acids on mammalian target of rapamycin (mTOR) signaling and protein synthesis rates in mammary cells. J. Dairy Sci., 97(1):419-429. ![]() [5]Arriola Apelo, S.I., Bell, A.L., Estes, K., et al., 2014a. Effects of reduced dietary protein and supplemental rumen-protected essential amino acids on the nitrogen efficiency of dairy cows. J. Dairy Sci., 97(9):5688-5699. ![]() [6]Arriola Apelo, S.I., Knapp, J.R., Hanigan, M.D., 2014b. Invited review: current representation and future trends of predicting amino acid utilization in the lactating dairy cow. J. Dairy Sci., 97(7):4000-4017. ![]() [7]Arriola Apelo, S.I., Singer, L.M., Lin, X.Y., et al., 2014c. Isoleucine, leucine, methionine, and threonine effects on mammalian target of rapamycin signaling in mammary tissue. J. Dairy Sci. 97(2):1047-1056. ![]() [8]Bequette, B.J., Hanigan, M.D., Calder, A.G., et al., 2000. Amino acid exchange by the mammary gland of lactating goats when histidine limits milk production. J. Dairy Sci., 83(4):765-775. ![]() [9]Beugnet, A., Tee, A.R., Taylor, P.M., et al., 2003. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem. J., 372(Pt 2):555-566. ![]() [10]Bionaz, M., Hurley, W., Loor, J., 2012. Milk protein synthesis in the lactating mammary gland: insights from transcriptomics analyses. In: Hurley, W. (Ed.), Milk Protein. InTech, Chapter 11, p.285-324. ![]() [11]Burgos, S.A., Cant, J.P., 2010. IGF-1 stimulates protein synthesis by enhanced signaling through mTORC1 in bovine mammary epithelial cells. Domest. Anim. Endocrinol., 38(4):211-221. ![]() [12]Cheng, S.W., Fryer, L.G., Carling, D., 2004. Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status. J. Biol. Chem., 279(16):15719-15722. ![]() [13]Christophersen, C.T., Karlsen, J., Nielsen, M.O., et al., 2002. Eukaryotic elongation factor-2 (eEF-2) activity in bovine mammary tissue. J. Dairy Res., 69(2):205-212. ![]() [14]Durán, R.V., Hall, M.N., 2012. Leucyl-tRNA synthetase: double duty in amino acid sensing. Cell Res., 22(8):1207-1209. ![]() [15]Gao, H.N., Hu, H., Wang, J.Q., et al., 2015. Effects of leucine and histidine on milk protein synthesis via mammalian target of rapamycin signaling pathway in the bovine mammary epithelial cells. Chin. J. Anim. Nutr., 27(4):1124-1134 (in Chinese). ![]() [16]Gerasimovskaya, E.V., Tucker, D.A., Stenmark, K.R., 2005. Activation of phosphatidylinositol 3-kinase, Akt, and mammalian target of rapamycin is necessary for hypoxia-induced pulmonary artery adventitial fibroblast proliferation. J. Appl. Physiol., 98(2):722-731. ![]() [17]Gingras, A.C., Raught, B., Sonenberg, N., 1999. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem., 68(1):913-963. ![]() [18]Hanigan, M.D., Crompton, L.A., Metcalf, J.A., et al., 2001. Modelling mammary metabolism in the dairy cow to predict milk constituent yield, with emphasis on amino acid metabolism and milk protein production: model evaluation. J. Theor. Biol., 213(2):223-239. ![]() [19]Hara, K., Maruki, Y., Long, X., et al., 2002. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell, 110(2):177-189. ![]() [20]Harris, T.E., Lawrence, J.C.Jr., 2003. TOR signaling. Sci. STKE, 212:re15. ![]() [21]Hristov, A.N., Price, W.J., Shafii, B., 2004. A meta-analysis examining the relationship among dietary factors, dry matter intake, and milk and milk protein yield in dairy cows. J. Dairy Sci., 87(7):2184-2196. ![]() [22]Hu, H., Zheng, N., Dai, W.T., 2014. Immortalization of a primary bovine mammary epithelial cell line by the SV40 large T-antigen gene. The American Dairy Science Association. Kansas City, MO. ![]() [23]Kalscheur, K.F., Baldwin VI, R.L., Glenn, B.P., et al., 2006. Milk production of dairy cows fed differing concentrations of rumen-degraded protein. J. Dairy Sci., 89(1):249-259. ![]() [24]Kaul, G., Pattan, G., Rafeequi, T., 2011. Eukaryotic elongation factor-2 (eEF2): its regulation and peptide chain elongation. Cell Biochem. Funct., 29(3):227-234. ![]() [25]Kim, C.H., Choung, J.J., Chamberlain, D.G., 2001. Estimates of the efficiency of transfer of L-histidine from blood to milk when it is the first-limiting amino acid for secretion of milk protein in the dairy cow. J. Sci. Food Agric., 81(12):1150-1155. ![]() [26]Kim, D.H., Sarbassov, D.D., Ali, S.M., 2002. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 110(2):163-175. ![]() [27]Kim, D.H., Sarbassov, D.D., Ali, S.M., et al., 2003. GβL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol. Cell, 11(4):895-904. ![]() [28]Kim, E., 2009. Mechanisms of amino acid sensing in mTOR signaling pathway. Nutr. Res. Pract., 3(1):64-71. ![]() [29]Kim, S.G., Buel, G.R., Blenis, J., 2013. Nutrient regulation of the mTOR complex 1 signaling pathway. Mol. Cells, 35(6):463-473. ![]() [30]Kimball, S.R., 2002. Regulation of global and specific mRNA translation by amino acids. J. Nutr., 132(5):883-886. ![]() [31]Korhonen, M., Vanhatalo, A., Huhtanen, P., 2002. Evaluation of isoleucine, leucine, and valine as a second-limiting amino acid for milk production in dairy cows fed grass silage diet. J. Dairy Sci., 85(6):1533-1545 ![]() [32]Laplante, M., Sabatini, D.M., 2012. mTOR signaling in growth control and disease. Cell, 149(2):274-293. ![]() [33]Li, X., Alafuzoff, I., Soininen, H., et al., 2005. Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J., 272(16):4211-4220. ![]() [34]Merrick, W.C., 1992. Mechanism and regulation of eukaryotic protein synthesis. Microbiol. Rev., 56(2):291-315. ![]() [35]Moshel, Y., Rhoads, R.E., Barash, I., 2006. Role of amino acids in translational mechanisms governing milk protein synthesis in murine and ruminant mammary epithelial cells. J. Cell. Biochem., 98(3):685-700. ![]() [36]Peterson, R.T., Beal, P.A., Comb, M.J., et al., 2000. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions. J. Biol. Chem., 275(10):7416-7423. ![]() [37]Prizant, R.L., Barash, I., 2008. Negative effects of the amino acids Lys, His, and Thr on S6K1 phosphorylation in mammary epithelial cells. J. Cell. Biochem., 105(4):1038-1047. ![]() [38]Proud, C.G., 2007. Amino acids and mTOR signalling in anabolic function. Biochem. Soc. Trans., 35(5):1187-1190. ![]() [39]Stipanuk, M.H., 2007. Leucine and protein synthesis: mTOR and beyond. Nutr. Rev., 65(3):122-129. ![]() [40]Toerien, C.A., Trout, D.R., Cant, J.P., 2010. Nutritional stimulation of milk protein yield of cows is associated with changes in phosphorylation of mammary eukaryotic initiation factor 2 and ribosomal S6 kinase 1. J. Nutr., 140(2):285-292. ![]() [41]Wang, C., Liu, H.Y., Wang, Y.M., et al., 2010. Effects of dietary supplementation of methionine and lysine on milk production and nitrogen utilization in dairy cows. J. Dairy Sci., 93(8):3661-3670. ![]() [42]Wang, X., Proud, C.G., 2006. The mTOR pathway in the control of protein synthesis. Physiology (Bethesda), 21:362-369. ![]() [43]Wilde, C.J., Quarrie, L.H., Tonner, E., et al., 1997. Mammary apoptosis. Livest. Prod. Sci., 50(1-2):29-37. ![]() [44]Yang, Q., Inoki, K., Kim, E., et al., 2006. TSC1/TSC2 and Rheb have different effects on TORC1 and TORC2 activity. PNAS, 103(18):6811-6816. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>