CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-05-16
Cited: 0
Clicked: 1499
Huan CHEN, Kunming LIANG, Cong HOU, Hai-long PIAO. Dichloroacetic acid and rapamycin synergistically inhibit tumor progression[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2200356 @article{title="Dichloroacetic acid and rapamycin synergistically inhibit tumor progression", %0 Journal Article TY - JOUR
二氯乙酸联合雷帕霉素协同抑制肿瘤进程1中国科学院分析化学分离科学重点实验室,中国科学院大连化学物理研究所,中国大连市,116023 2中国医科大学生命学院,生命化学与分子生物学系,中国沈阳市,110122 3中国科学院大学,中国北京市,100049 摘要:哺乳动物雷帕霉素靶蛋白(mTOR)控制细胞的合成代谢,并且在大多数的肿瘤细胞中mTOR信号通路高度活化,因此抑制mTOR信号通路对癌症患者有益。雷帕霉素是一种美国食品药品监督管理局(FDA)批准的临床一线药物,是mTORC1的特异性抑制剂,用于治疗多种不同类型的癌症。然而,研究发现雷帕霉素仅抑制肿瘤细胞的增殖并不引起细胞的凋亡。丙酮酸脱氢酶复合体(PDHc)在线粒体丙酮酸氧化过程起着决定作用。许多肿瘤细胞中的PDHc处于失活状态,这一变化可以使肿瘤细胞免于衰老和NAD+耗竭。本研究中,雷帕霉素处理细胞导致依赖mTOR信号通路抑制的丙酸脱氢酶α1(PDHA1)磷酸化水平升高,并导致PDHc酶活降低。PDHc失活直接引起肿瘤细胞对雷帕霉素敏感度下降。因此,在体内和体外的实验中通过使用丙酮酸脱氢酶激酶(PDK)的抑制剂二氯乙酸(DCA)可以重新激活PDHc的活力,进而增加肿瘤细胞对雷帕霉素的敏感性。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AraújoNC, Sampaio Goncalves de Lucena SB, da Silveira RiojaS, 2014. Effect of rapamycin on spleen size in longstanding renal transplant recipients. Transplant Proc, 46(5):1319-1323. ![]() [2]BaiZS, PengYL, YeXY, et al., 2022. Autophagy and cancer treatment: four functional forms of autophagy and their therapeutic applications. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(2):89-101. ![]() [3]BenjaminD, ColombiM, MoroniC, et al., 2011. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov, 10(11):868-880. ![]() [4]BerettaL, GingrasAC, SvitkinYV, et al., 1996. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J, 15(3):658-664. ![]() [5]BernardiR, GuernahI, JinD, et al., 2006. PML inhibits HIF-1α translation and neoangiogenesis through repression of mTOR. Nature, 442(7104):779-785. ![]() [6]CaoWG, YacoubS, ShiverickKT, et al., 2008. Dichloroacetate (DCA) sensitizes both wild-type and over expressing Bcl-2 prostate cancer cells in vitro to radiation. Prostate, 68(11):1223-1231. ![]() [7]FanQW, AksoyO, WongRA, et al., 2017. A kinase inhibitor targeted to mTORC1 drives regression in glioblastoma. Cancer Cell, 31(3):424-435. ![]() [8]GhobrialIM, SiegelDS, VijR, et al., 2016. TAK-228 (formerly MLN0128), an investigational oral dual TORC1/2 inhibitor: a phase I dose escalation study in patients with relapsed or refractory multiple myeloma, non-Hodgkin lymphoma, or waldenström’s macroglobulinemia. Am J Hematol, 91(4):400-405. ![]() [9]GubaM, von BreitenbuchP, SteinbauerM, et al., 2002. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med, 8(2):128-135. ![]() [10]HolnessMJ, SugdenMC, 2003. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans, 31(6):1143-1151. ![]() [11]HsiehAC, LiuY, EdlindMP, et al., 2012. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature, 485(7396):55-61. ![]() [12]JacintoE, LoewithR, SchmidtA, et al., 2004. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol, 6(11):1122-1128. ![]() [13]JacobsKE, VisserBC, GayerG, 2012. Changes in spleen volume after resection of hepatic colorectal metastases. Clin Radiol, 67(10):982-987. ![]() [14]KaplonJ, ZhengL, MeisslK, et al., 2013. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature, 498(7452):109-112. ![]() [15]KimJ, GuanKL, 2019. mTOR as a central hub of nutrient signalling and cell growth. Nat Cell Biol, 21(1):63-71. ![]() [16]LammingDW, YeL, KatajistoP, et al., 2012. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science, 335(6076):1638-1643. ![]() [17]LevyJMM, TowersCG, ThorburnA, 2017. Targeting autophagy in cancer. Nat Rev Cancer, 17(9):528-542. ![]() [18]LorussoPM, 2016. Inhibition of the PI3K/AKT/mTOR pathway in solid tumors. J Clin Oncol, 34(31):3803-3815. ![]() [19]LucidoCT, MiskiminsWK, VermeerPD, 2018. Propranolol promotes glucose dependence and synergizes with dichloroacetate for anti-cancer activity in HNSCC. Cancers (Basel), 10(12):476. ![]() [20]LuengoA, LiZQ, GuiDY, et al., 2021. Increased demand for NAD+ relative to ATP drives aerobic glycolysis. Mol Cell, 81(4):691-707.e6. ![]() [21]MenonS, ManningBD, 2008. Common corruption of the mTOR signaling network in human tumors. Oncogene, 27:S43-S51. ![]() [22]PatelMS, NemeriaNS, FureyW, et al., 2014. The pyruvate dehydrogenase complexes: structure-based function and regulation. J Biol Chem, 289(24):16615-16623. ![]() [23]PhungTL, ZivK, DabydeenD, et al., 2006. Pathological angiogenesis is induced by sustained Akt signaling and inhibited by rapamycin. Cancer Cell, 10(2):159-170. ![]() [24]RobitailleAM, ChristenS, ShimobayashiM, et al., 2013. Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science, 339(6125):1320-1323. ![]() [25]Rodrik-OutmezguineVS, ChandarlapatyS, PaganoNC, et al., 2011. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov, 1(3):248-259. ![]() [26]Rodrik-OutmezguineVS, OkaniwaM, YaoZ, et al., 2016. Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature, 534(7606):272-276. ![]() [27]SabatiniDM, Erdjument-BromageH, LuiM, et al., 1994. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell, 78(1):35-43. ![]() [28]SarbassovDD, AliSM, SenguptaS, et al., 2006. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell, 22(2):159-168. ![]() [29]Škorja MilićN, DolinarK, MišK, et al., 2021. Suppression of pyruvate dehydrogenase kinase by dichloroacetate in cancer and skeletal muscle cells is isoform specific and partially independent of HIF-1α. Int J Mol Sci, 22(16):8610. ![]() [30]SutendraG, DromparisP, KinnairdA, et al., 2013. Mitochondrial activation by inhibition of PDKII suppresses HIF1α signaling and angiogenesis in cancer. Oncogene, 32(13):1638-1650. ![]() [31]TataranniT, PiccoliC, 2019. Dichloroacetate (DCA) and cancer: an overview towards clinical applications. Oxid Med Cell Longev, 2019:8201079. ![]() [32]TsoSC, QiXB, GuiWJ, et al., 2014. Structure-guided development of specific pyruvate dehydrogenase kinase inhibitors targeting the ATP-binding pocket. J Biol Chem, 289(7):4432-4443. ![]() [33]ValvezanAJ, TurnerM, BelaidA, et al., 2017. mTORC1 couples nucleotide synthesis to nucleotide demand resulting in a targetable metabolic vulnerability. Cancer Cell, 32(5):624-638.e5. ![]() [34]VermaA, LamYM, LeungYC, et al., 2019. Combined use of arginase and dichloroacetate exhibits anti-proliferative effects in triple negative breast cancer cells. J Pharm Pharmacol, 71(3):306-315. ![]() [35]WuJG, ZhaoYL, ParkYK, et al., 2018. Loss of PDK4 switches the hepatic NF-κB/TNF pathway from pro-survival to pro-apoptosis. Hepatology, 68(3):1111-1124. ![]() [36]YangHJ, JiangXL, LiBR, et al., 2017. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature, 552(7685):368-373. ![]() [37]YangWC, PangDJ, ChenMN, et al., 2021. Rheb mediates neuronal-activity-induced mitochondrial energetics through mTORC1-independent PDH activation. Dev Cell, 56(6):811-825.e6. ![]() [38]ZhangS, QianGQ, ZhangQQ, et al., 2019. mTORC2 suppresses GSK3-dependent snail degradation to positively regulate cancer cell invasion and metastasis. Cancer Res, 79(14):3725-3736. ![]() [39]ZhuangHQ, BaiJ, ChangJY, et al., 2016. MTOR inhibition reversed drug resistance after combination radiation with erlotinib in lung adenocarcinoma. Oncotarget, 7(51):84688-84694. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>