CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-05-16
Cited: 0
Clicked: 1767
Wen CAO, Shunnan YAO, Anqi LI, Haoguang CHEN, Enfan ZHANG, Liqin CAO, Jinna ZHANG, Yifan HOU, Zhenfeng DAI, Jing CHEN, Xi HUANG, Li YANG, Zhen CAI. CUDC-101 as a dual-target inhibitor of EGFR and HDAC enhances the anti-myeloma effects of bortezomib by regulating G2/M cell cycle arrest[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2200465 @article{title="CUDC-101 as a dual-target inhibitor of EGFR and HDAC enhances the anti-myeloma effects of bortezomib by regulating G2/M cell cycle arrest", %0 Journal Article TY - JOUR
EGFR和HDAC双靶点抑制剂CUDC-101通过调控G2/M期阻滞增强硼替佐米抗骨髓瘤的作用1浙江大学医学院附属第一医院骨髓移植中心, 中国杭州市, 310006 2浙江大学血液病研究所, 中国杭州市, 310058 3浙江大学医学院, 中国杭州市, 310058 摘要:多发性骨髓瘤(MM)是一种高度异质性的疾病。硼替佐米作为第一代蛋白酶体抑制剂,大大提高了MM的治疗效果和疾病预后,延长了患者的总生存期和生活质量。然而,部分患者在接受硼替佐米治疗后仍会出现疾病复发和进展,且由硼替佐米引起的周围神经病变严重影响了患者的生活质量。因此,寻找新的MM治疗药物,或减少硼替佐米治疗的副作用,对MM患者是一个非常重要的临床需求。本研究旨在探索表皮生长因子受体(EGFR)和组蛋白去乙酰化酶(HDAC)双靶点抑制剂CUDC-101对MM治疗的潜在疗效,并阐述其潜在机制。结果表明,CUDC-101可通过抑制EGFR/PI3K和HDAC信号通路,诱导MM细胞系或原代CD138阳性MM细胞的细胞周期阻滞,显著抑制细胞增殖,诱导细胞凋亡。同时,CUDC-101在MM异种移植物模型中也表现出明显的生长抑制作用。此外,我们证实了CUDC-101和治疗MM的最常用的药物之一硼替佐米之间的协同作用。利用MM细胞系和异种移植模型,我们还发现了它可以显著抑制细胞增殖和肿瘤生长。总之,我们确定了CUDC-101在单药或联合硼替佐米治疗MM中的有效性。这一结果为MM患者的治疗提供了一种新的策略。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AndersonKC, 2016. Progress and paradigms in multiple myeloma. Clin Cancer Res, 22(22):5419-5427. ![]() [2]ArgyriouAA, IconomouG, KalofonosHP, 2008. Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood, 112(5):1593-1599. ![]() [3]BassAKA, El-ZoghbiMS, NageebESM, et al., 2021. Comprehensive review for anticancer hybridized multitargeting HDAC inhibitors. Eur J Med Chem, 209:112904. ![]() [4]HarbeckN, Penault-LlorcaF, CortesJ, et al., 2019. Breast cancer. Nat Rev Dis Primers, 5:66. ![]() [5]HeJS, ChenQX, GuHY, et al., 2018. Therapeutic effects of the novel subtype-selective histone deacetylase inhibitor chidamide on myeloma-associated bone disease. Haematologica, 103(8):1369-1379. ![]() [6]HuangX, CaoW, YaoSN, et al., 2022. NEDD4L binds the proteasome and promotes autophagy and bortezomib sensitivity in multiple myeloma. Cell Death Dis, 13(3):197. ![]() [7]JiMY, LiZL, LinZH, et al., 2018. Antitumor activity of the novel HDAC inhibitor CUDC-101 combined with gemcitabine in pancreatic cancer. Am J Cancer Res, 8(12):2402-2418. ![]() [8]JiangWQ, FuFF, LiYX, et al., 2012. Molecular biomarkers of colorectal cancer: prognostic and predictive tools for clinical practice. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 13(9):663-675. ![]() [9]JoshuaDE, BryantC, DixC, et al., 2019. Biology and therapy of multiple myeloma. Med J Aust, 210(8):375-380. ![]() [10]KikuchiS, SuzukiR, OhguchiH, et al., 2015. Class IIa HDAC inhibition enhances ER stress-mediated cell death in multiple myeloma. Leukemia, 29(9):1918-1927. ![]() [11]KumarSK, RajkumarV, KyleRA, et al., 2017. Multiple myeloma. Nat Rev Dis Primers, 3:17046. ![]() [12]KumarSK, HarrisonSJ, CavoM, et al., 2020. Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): a randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol, 21(12):1630-1642. ![]() [13]LiHY, CuiRH, JiMY, et al., 2021. CUDC-101 enhances the chemosensitivity of gemcitabine-treated lymphoma cells. Leuk Res, 106:106575. ![]() [14]LiYH, YuanJ, 2021. Role of deubiquitinating enzymes in DNA double-strand break repair. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(1):63-72. ![]() [15]LiangL, HeYJ, WangHQ, et al., 2020. The Wee1 kinase inhibitor MK1775 suppresses cell growth, attenuates stemness and synergises with bortezomib in multiple myeloma. Br J Haematol, 191(1):62-76. ![]() [16]LuoHM, ZhangD, WangFF, et al., 2021. ALCAM-EGFR interaction regulates myelomagenesis. Blood Adv, 5(23):5269-5282. ![]() [17]MahtoukK, HoseD, RèmeT, et al., 2005. Expression of EGF-family receptors and amphiregulin in multiple myeloma. Amphiregulin is a growth factor for myeloma cells. Oncogene, 24(21):3512-3524. ![]() [18]MatthewsHK, BertoliC, de BruinRAM, 2022. Cell cycle control in cancer. Nat Rev Mol Cell Biol, 23(1):74-88. ![]() [19]MinamiJ, SuzukiR, MazitschekR, et al., 2014. Histone deacetylase 3 as a novel therapeutic target in multiple myeloma. Leukemia, 28(3):680-689. ![]() [20]ShimizuT, LorussoPM, PapadopoulosKP, et al., 2014. Phase I first-in-human study of CUDC-101, a multitargeted inhibitor of HDACs, EGFR, and HER2 in patients with advanced solid tumors. Clin Cancer Res, 20(19):5032-5040. ![]() [21]VallabhapurapuSD, NoothiSK, PullumDA, et al., 2015. Transcriptional repression by the HDAC4-RelB-p52 complex regulates multiple myeloma survival and growth. Nat Commun, 6:8428. ![]() [22]van de Donk NWCJ, PawlynC, YongKL, 2021. Multiple myeloma. Lancet, 397(10272):410-427. ![]() [23]von TresckowB, BoellB, EichenauerD, et al., 2014. Anti-epidermal growth factor receptor antibody cetuximab in refractory or relapsed multiple myeloma: a phase II prospective clinical trial. Leuk Lymphoma, 55(3):695-697. ![]() [24]Wallington-BeddoeCT, Sobieraj-TeagueM, KussBJ, et al., 2018. Resistance to proteasome inhibitors and other targeted therapies in myeloma. Br J Haematol, 182(1):11-28. ![]() [25]WangJ, PursellNW, SamsonMES, et al., 2013. Potential advantages of CUDC-101, a multitargeted HDAC, EGFR, and HER2 inhibitor, in treating drug resistance and preventing cancer cell migration and invasion. Mol Cancer Ther, 12(6):925-936. ![]() [26]WuSG, ShihJY, 2018. Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol Cancer, 17:38. ![]() [27]ZhangLS, BoufraqechM, LakeR, et al., 2016. Carfilzomib potentiates CUDC-101-induced apoptosis in anaplastic thyroid cancer. Oncotarget, 7(13):16517-16528. ![]() [28]ZhangMN, ZhangLX, HeiRX, et al., 2021. CDK inhibitors in cancer therapy, an overview of recent development. Am J Cancer Res, 11(5):1913-1935. ![]() [29]ZhangTZ, MaD, WeiDN, et al., 2020. CUDC-101 overcomes arsenic trioxide resistance via caspase-dependent promyelocytic leukemia-retinoic acid receptor alpha degradation in acute promyelocytic leukemia. Anticancer Drugs, 31(2):158-168. ![]() [30]ZhouZL, van der JeughtK, FangYZ, et al., 2021. An organoid-based screen for epigenetic inhibitors that stimulate antigen presentation and potentiate T-cell-mediated cytotoxicity. Nat Biomed Eng, 5(11):1320-1335. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>