CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-09-13
Cited: 0
Clicked: 1568
Yating FANG, Man CHEN, Bofeng ZHU. Construction and evaluation of in-house methylation-sensitive SNaPshot system and three classification prediction models for identifying the tissue origin of body fluid[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2200555 @article{title="Construction and evaluation of in-house methylation-sensitive SNaPshot system and three classification prediction models for identifying the tissue origin of body fluid", %0 Journal Article TY - JOUR
鉴定体液来源的甲基化敏感性SNaPshot体系及三种预测模型的构建与评估1南方医科大学法医学学院,广州市法医多组学精准鉴定重点实验室,中国广州市,510515 2安徽医科大学基础医学院,中国合肥市,230031 3南方医科大学珠江医院检验医学科微生物组医学中心,中国广州市,510515 摘要:体液组织来源的鉴定可为刑事案件的侦查提供线索和证据。为了建立一种高效的法医学体液鉴定方法,本研究选取了8个新的体液特异性DNA甲基化标志物,并基于这些标志物构建了可用于5种常见体液(静脉血、唾液、经血、阴道液和精液)鉴定的多重单碱基延伸反应(SNaPshot)体系。结果表明,该系统具有良好的物种特异性和灵敏度,可用于混合生物样本的鉴定。同时,本研究利用前期研究数据构建了一个人工体液预测模型和两个分别基于支持向量机和随机森林算法的机器学习预测模型,并利用本研究获得的检测数据(n=95)对这些预测模型进行了测试。基于研究者经验建立的人工预测模型的准确率为95.79%,支持向量机预测模型对除唾液(96.84%)外的所有体液的预测准确率均为100.00%,随机森林预测模型对5种体液的预测准确率均为100.00%。综上所述,我们所构建的SNaPshot系统和随机森林预测模型能够实现体液组织来源的准确鉴定。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AlderdenJ, PepperGA, WilsonA, et al., 2018. Predicting pressure injury in critical care patients: a machine-learning model. Am J Crit Care, 27(6):461-468. ![]() [2]Benn TorresJ, MartucciV, AldrichMC, et al., 2019. Analysis of biogeographic ancestry reveals complex genetic histories for indigenous communities of St. Vincent and Trinidad. Am J Phys Anthropol, 169(3):482-497. ![]() [3]BiQF, GoodmanKE, KaminskyJ, et al., 2019. What is machine learning? A primer for the epidemiologist. Am J Epidemiol, 188(12):2222-2239. ![]() [4]CheDS, LiuQ, RasheedK, et al., 2011. Decision tree and ensemble learning algorithms with their applications in bioinformatics. In: Arabnia HR, Tran QN (Eds.), Software Tools and Algorithms for Biological Systems. Springer, New York, p.191-199. ![]() [5]ChenCJ, ChenH, ZhangY, et al., 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant, 13(8):1194-1202. ![]() [6]ChoungCM, LeeJW, ParkJH, et al., 2021. A forensic case study for body fluid identification using DNA methylation analysis. Leg Med, 51:101872. ![]() [7]ChowdhuryAR, ChatterjeeT, BanerjeeS, 2019. A random forest classifier-based approach in the detection of abnormalities in the retina. Med Biol Eng Comput, 57(1):193-203. ![]() [8]DeoRC, 2015. Machine learning in medicine. Circulation, 132(20):1920-1930. ![]() [9]de RaadtA, WarrensMJ, BoskerRJ, et al., 2019. Kappa coefficients for missing data. Educ Psychol Meas, 79(3):558-576. ![]() [10]DiasHC, CordeiroC, PereiraJ, et al., 2020. DNA methylation age estimation in blood samples of living and deceased individuals using a multiplex SNaPshot assay. Forensic Sci Int, 311:110267. ![]() [11]EngstrandRD, MoellerG, 1967. Confusion matrix analysis for form perception. Hum Factors, 9(5):439-446. ![]() [12]ForatS, HuettelB, ReinhardtR, et al., 2016. Methylation markers for the identification of body fluids and tissues from forensic trace evidence. PLoS ONE, 11(2):e0147973. ![]() [13]HaddrillPR, 2021. Developments in forensic DNA analysis. Emerg Top Life Sci, 5(3):381-393. ![]() [14]HaoT, GuoJL, LiuJD, et al., 2021. Predicting human age by detecting DNA methylation status in hair. Electrophoresis, 42(11):1255-1261. ![]() [15]HuangHZ, LiuXZ, ChengJB, et al., 2022. A novel multiplex assay system based on 10 methylation markers for forensic identification of body fluids. J Forensic Sci, 67(1):136-148. ![]() [16]HuangSJ, CaiNG, PachecoPP, et al., 2018. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics Proteomics, 15(1):41-51. ![]() [17]KaderF, GhaiM, OlaniranAO, 2020. Characterization of DNA methylation-based markers for human body fluid identification in forensics: a critical review. Int J Legal Med, 134(1):1-20. ![]() [18]LeeHY, AnJH, JungSE, et al., 2015. Genome-wide methylation profiling and a multiplex construction for the identification of body fluids using epigenetic markers. Forensic Sci Int Genet, 17:17-24. ![]() [19]LeeJE, LeeJM, NaueJ, et al., 2022. A collaborative exercise on DNA methylation-based age prediction and body fluid typing. Forensic Sci Int Genet, 57:102656. ![]() [20]MartinNC, ClaysonNJ, ScrimgerDG, 2006. The sensitivity and specificity of Red-Starch paper for the detection of saliva. Sci Justice, 46(2):97-105. ![]() [21]MatteiAL, BaillyN, MeissnerA, 2022. DNA methylation: a historical perspective. Trends Genet, 38(7):676-707. ![]() [22]PanC, YiSH, XiaoC, et al., 2020. The evaluation of seven age-related CpGs for forensic purpose in blood from Chinese Han population. Forensic Sci Int Genet, 46:102251. ![]() [23]ParkJL, KwonOH, KimJH, et al., 2014. Identification of body fluid-specific DNA methylation markers for use in forensic science. Forensic Sci Int Genet, 13:147-153. ![]() [24]SijenT, HarbisonS, 2021. On the identification of body fluids and tissues: a crucial link in the investigation and solution of crime. Genes, 12(11):1728. ![]() [25]TianH, BaiP, TanY, et al., 2020. A new method to detect methylation profiles for forensic body fluid identification combining ARMS-PCR technique and random forest model. Forensic Sci Int Genet, 49:102371. ![]() [26]VirklerK, LednevIK, 2009. Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int, 188(1-3):1-17. ![]() [27]ZhaoC, YangJ, XuH, et al., 2022. Genetic diversity analysis of forty-three insertion/deletion loci for forensic individual identification in Han Chinese from Beijing based on a novel panel. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(3):241-248. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>