CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-05-16
Cited: 0
Clicked: 1453
Juncheng HUANG, Wenxia QIN, Baoyang XU, Haihui SUN, Fanghua JING, Yunzheng XU, Jianan ZHAO, Yuwen CHEN, Libao MA, Xianghua YAN. Rice bran oil supplementation protects swine weanlings against diarrhea and lipopolysaccharide challenge[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2200565 @article{title="Rice bran oil supplementation protects swine weanlings against diarrhea and lipopolysaccharide challenge", %0 Journal Article TY - JOUR
日粮添加米糠油可增强断奶仔猪抵抗腹泻和脂多糖应激1华中农业大学动物科学技术学院, 农业微生物学国家重点实验室, 湖北洪山实验室, 动物育种与健康养殖前沿科学中心, 中国武汉市, 430070 2生猪健康养殖省部共建协同创新中心, 中国武汉市, 430070 3生猪精准饲养与饲料安全技术湖北省工程实验室, 中国武汉市, 430070 4宜春市大海龟生命科学有限公司, 中国宜春市, 336000 摘要:早期断奶仔猪遭受氧化应激和肠道感染,通常会导致肠道微生物失调、腹泻甚至死亡。米糠油(RBO)是一种富含多酚的大米加工副产品,在体内和体外都具有抗氧化和抗炎特性。本研究中,我们确定了早期断奶仔猪日粮中适当的RBO补充水平,随后确定了它对脂多糖(LPS)诱导的断奶仔猪肠道功能障碍的影响。将168头仔猪随机分4组,每组7个重复(42头/组,(21±1)日龄,体重(7.60±0.04) kg,公母各半),分别接受基础日粮(Ctrl)或补充基础日粮含0.01% RBO(RBO1)、0.02% RBO(RBO2)或0.03% RBO(RBO3)。饲喂21天后,Ctrl和RBO组的7头仔猪经LPS(100 µg/kg BW)处理(分别为LPS组和RBO+LPS组)。同时将Ctrl组的7头仔猪用载体盐水处理作为对照(Ctrl组)。四小时后,处死所有处理组仔猪并采集血浆、空肠组织和粪便。分别检测血浆中抗氧化和免疫指标,评估空肠组织形态和屏障功能以及通过16S rDNA测序分析肠道微生物组成、功能及多样性。结果表明,根据早期断奶仔猪的腹泻、平均日增重和平均日采食量指标,0.02%是日粮中添加RBO的最佳剂量。此外,RBO可以缓解LPS诱导的仔猪空肠上皮损伤,表现为绒毛高度、绒毛高度/隐窝深度比和Claudin-1水平的增加,以及空肠上皮细胞凋亡的改善。RBO还提高了LPS应激仔猪的抗氧化能力,表现为血浆中过氧化氢酶和超氧化物歧化酶浓度升高,总抗氧化能力提升,以及二胺氧化酶和丙二醛浓度降低。 同时,RBO提高了LPS应激的断奶仔猪的免疫功能,表现为血浆中IgA、IgM、β-防御素-1和溶菌酶升高。此外,补充RBO还改善了LPS应激引起的肠道菌群失调。相关性分析结果发现,仔猪抗氧化能力、肠道损伤和免疫力指标分别与RBO调节的肠道微生物群显着相关。综上所述,0.02% RBO是缓解LPS诱导的早期断奶仔猪肠道损伤、氧化应激和空肠微生物群失调的适当剂量。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AlbenbergL, EsipovaTV, JudgeCP, et al., 2014. Correlation between intraluminal oxygen gradient and radial partitioning of intestinal microbiota. Gastroenterology, 147(5):1055-1063.e8. ![]() [2]AllenHK, LevineUY, LooftT, et al., 2013. Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends Microbiol, 21(3):114-119. ![]() [3]BaoT, ZhangM, ZhouYQ, et al., 2021. Phenolic profile of jujube fruit subjected to gut microbiota fermentation and its antioxidant potential against ethyl carbamate-induced oxidative damage. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 22(5):397-409. ![]() [4]BhandariSK, XuB, NyachotiCM, et al., 2008. Evaluation of alternatives to antibiotics using an Escherichia coli K88+ model of piglet diarrhea: effects on gut microbial ecology. J Anim Sci, 86(4):836-847. ![]() [5]BolerDD, Fernández-DueñasDM, KutzlerLW, et al., 2012. Effects of oxidized corn oil and a synthetic antioxidant blend on performance, oxidative status of tissues, and fresh meat quality in finishing barrows. J Anim Sci, 90(13):5159-5169. ![]() [6]BolyenE, RideoutJR, DillonMR, et al., 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol, 37(8):852-857. ![]() [7]CampbellJM, CrenshawJD, PoloJ, 2013. The biological stress of early weaned piglets. J Anim Sci Biotechnol, 4:19. ![]() [8]ChenCC, WangZB, LiJZ, et al., 2019. Dietary vitamin E affects small intestinal histomorphology, digestive enzyme activity, and the expression of nutrient transporters by inhibiting proliferation of intestinal epithelial cells within jejunum in weaned piglets. J Anim Sci, 97(3):1212-1221. ![]() [9]DouS, Gadonna-WidehemP, RomeV, et al., 2017. Characterisation of early-life fecal microbiota in susceptible and healthy pigs to post-weaning diarrhoea. PLoS ONE, 12(1):e0169851. ![]() [10]DouglasGM, MaffeiVJ, ZaneveldJR, et al., 2020. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol, 38(6):685-688. ![]() [11]FragouS, FegerosK, XylouriE, et al., 2004. Effect of vitamin E supplementation on various functional properties of macrophages and neutrophils obtained from weaned piglets. J Vet Med Ser A, 51(4):178-183. ![]() [12]FreseSA, ParkerK, CalvertCC, et al., 2015. Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome, 3:28. ![]() [13]GavrieliY, ShermanY, Ben-SassonSA, 1992. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol, 119(3):493-501. ![]() [14]GreinerT, BäckhedF, 2011. Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab, 22(4):117-123. ![]() [15]GresseR, Chaucheyras-DurandF, FleuryMA, et al., 2017. Gut microbiota dysbiosis in postweaning piglets: understanding the keys to health. Trends Microbiol, 25(10):851-873. ![]() [16]HuRZ, WuSS, LiBZ, et al., 2022. Dietary ferulic acid and vanillic acid on inflammation, gut barrier function and growth performance in lipopolysaccharide-challenged piglets. Anim Nutr, 8:144-152. ![]() [17]HuangCY, FanZJ, HanDD, et al., 2021. Pyrroloquinoline quinone regulates the redox status in vitro and in vivo of weaned pigs via the Nrf2/HO-1 pathway. J Anim Sci Biotechnol, 12:77. ![]() [18]KaakoushNO, 2015. Insights into the role of Erysipelotrichaceae in the human host. Front Cell Infect Microbiol, 5:84. ![]() [19]KushwahaR, 2018. Pharmacognosy of rice bran oil—a review. Int J Green Pharm, 12(4):S784-S789. ![]() [20]LiuKY, NakatsuCH, Jones-HallY, et al., 2021. Vitamin E alpha- and gamma-tocopherol mitigate colitis, protect intestinal barrier function and modulate the gut microbiota in mice. Free Radical Biol Med, 163:180-189. ![]() [21]LuT, HarperAF, ZhaoJ, et al., 2014. Supplementing antioxidants to pigs fed diets high in oxidants: I. Effects on growth performance, liver function, and oxidative status. J Anim Sci, 92(12):5455-5463. ![]() [22]MocchegianiE, CostarelliL, GiacconiR, et al., 2014. Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. A systematic review. Ageing Res Rev, 14:81-101. ![]() [23](National Research Council)NRC, 2012. Nutrient Requirements of Swine, 11th Rev. Ed. National Academics Press, Washington, DC. ![]() [24]PosuwanJ, PrangthipP, LeardkamolkarnV, et al., 2013. Long-term supplementation of high pigmented rice bran oil (Oryza sativa L.) on amelioration of oxidative stress and histological changes in streptozotocin-induced diabetic rats fed a high fat diet; Riceberry bran oil. Food Chem, 138(1):501-508. ![]() [25]PratesJAM, FreireJPB, de AlmeidaAM, et al., 2021. Influence of dietary supplementation with an amino acid mixture on inflammatory markers, immune status and serum proteome in LPS-challenged weaned piglets. Animals, 11(4):1143. ![]() [26]PuniaS, KumarM, SirohaAK, et al., 2021. Rice bran oil: emerging trends in extraction, health benefit, and its industrial application. Rice Sci, 28(3):217-232. ![]() [27]QiuYQ, YangJ, WangL, et al., 2021. Dietary resveratrol attenuation of intestinal inflammation and oxidative damage is linked to the alteration of gut microbiota and butyrate in piglets challenged with deoxynivalenol. J Anim Sci Biotechnol, 12:71. ![]() [28]RenW, YuB, YuJ, et al., 2022. Lower abundance of Bacteroides and metabolic dysfunction are highly associated with the post-weaning diarrhea in piglets. Sci China Life Sci, 65(10):2062-2075. ![]() [29]SchneiderCA, RasbandWS, EliceiriKW, 2012. NIH image to imageJ: 25 years of image analysis. Nat Methods, 9(7):671-675. ![]() [30]SegataN, IzardJ, WaldronL, et al., 2011. Metagenomic biomarker discovery and explanation. Genome Biol, 12(6):R60. ![]() [31]ShangQS, ShanXD, CaiC, et al., 2016. Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae. Food Funct, 7(7):3224-3232. ![]() [32]Silva-GuillenYV, ArellanoC, BoydRD, et al., 2020. Growth performance, oxidative stress and immune status of newly weaned pigs fed peroxidized lipids with or without supplemental vitamin E or polyphenols. J Anim Sci Biotechnol, 11:22. ![]() [33]SinghPK, WiseSY, DuceyEJ, et al., 2011. α-Tocopherol succinate protects mice against radiation-induced gastrointestinal injury. Radiat Res, 177(2):133-145. ![]() [34]StarkeIC, PieperR, NeumannK, et al., 2014. The impact of high dietary zinc oxide on the development of the intestinal microbiota in weaned piglets. FEMS Microbiol Ecol, 87(2):416-427. ![]() [35]SunX, CuiYL, SuYY, et al., 2021. Dietary fiber ameliorates lipopolysaccharide-induced intestinal barrier function damage in piglets by modulation of intestinal microbiome. mSystems, 6(2):e01374-20. ![]() [36]WangXF, TsaiT, DengFL, et al., 2019. Longitudinal investigation of the swine gut microbiome from birth to market reveals stage and growth performance associated bacteria. Microbiome, 7:109. ![]() [37]WangY, ZhangRM, LiJY, et al., 2017. Comprehensive resistome analysis reveals the prevalence of NDM and MCR-1 in Chinese poultry production. Nat Microbiol, 2(4):16260. ![]() [38]WinterSE, WinterMG, XavierMN, et al., 2013. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science, 339(6120):708-711. ![]() [39]XuBY, QinWX, XuYZ, et al., 2021a. Dietary quercetin supplementation attenuates diarrhea and intestinal damage by regulating gut microbiota in weanling piglets. Oxid Med Cell Longev, 2021:6221012. ![]() [40]XuBY, YanYQ, YinBQ, et al., 2021b. Dietary glycyl-glutamine supplementation ameliorates intestinal integrity, inflammatory response, and oxidative status in association with the gut microbiota in LPS-challenged piglets. Food Funct, 12(8):3539-3551. ![]() [41]XuX, WangXY, WuHT, et al., 2018. Glycine relieves intestinal injury by maintaining mTOR signaling and suppressing AMPK, TLR4, and NOD signaling in weaned piglets after lipopolysaccharide challenge. Int J Mol Sci, 19(7):1980. ![]() [42]XuX, HuaHW, WangLM, et al., 2020. Holly polyphenols alleviate intestinal inflammation and alter microbiota composition in lipopolysaccharide-challenged pigs. Br J Nutr, 123(8):881-891. ![]() [43]YanYQ, XuBY, YinBQ, et al., 2020. Modulation of gut microbial community and metabolism by dietary glycyl-glutamine supplementation may favor weaning transition in piglets. Front Microbiol, 10:3125. ![]() [44]YardeniT, TanesCE, BittingerK, et al., 2019. Host mitochondria influence gut microbiome diversity: a role for ROS. Sci Signal, 12(588):eaaw3159. ![]() [45]YiGF, CarrollJA, AlleeGL, et al., 2005. Effect of glutamine and spray-dried plasma on growth performance, small intestinal morphology, and immune responses of Escherichia coli K88+-challenged weaned pigs. J Anim Sci, 83(3):634-643. ![]() [46]ZengMY, InoharaN, NuñezG, 2017. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol, 10(1):18-26. ![]() [47]ZhangYC, MuTQ, JiaH, et al., 2022. Protective effects of glycine against lipopolysaccharide-induced intestinal apoptosis and inflammation. Amino Acids, 54(3):353-364. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>