CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2023-09-13
Cited: 0
Clicked: 1370
Citations: Bibtex RefMan EndNote GB/T7714
Yuwei DAI, Ziqiong WU, Yitong CHEN, Xinjian YE, Chaowei WANG, Huiyong ZHU. OCT4’s role and mechanism underlying oral squamous cell carcinoma[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2200602 @article{title="OCT4’s role and mechanism underlying oral squamous cell carcinoma", %0 Journal Article TY - JOUR
OCT4在口腔鳞状细胞癌发病机制中的作用1浙江大学医学院第一附属医院口腔颌面外科,中国杭州市,310003 2浙江大学医学院,中国杭州市,310058 3浙江中医药大学口腔医学院,中国杭州市,310053 4浙江大学医学院附属口腔医院,浙江大学口腔医学院,浙江省口腔疾病临床医学研究中心,浙江省口腔生物医学研究重点实验室,浙江大学癌症研究院,中国杭州市,310006 摘要:口腔鳞状细胞癌(OSCC)是一种常见的头颈部恶性肿瘤。由于肿瘤复发率高、颈部淋巴结转移和缺乏有效的全身治疗手段,OSCC在全球最具负面影响的癌症中排名第六。其预后差,死亡率高。八聚体结合转录因子4(OCT4)是Pit-Oct-Unc(POU)家族的成员,是一种关键的重编程因子,在保持胚胎干细胞(ESCs)的多能性和自我更新状态方面具有显著作用。最近的研究表明,OCT4参与维持OSCC癌症干细胞(CSC)的存活,对口腔癌的发生、复发、转移和预后具有深远的影响。因此,我们总结了OCT4的结构、亚型、功能及其在OSCC的发生、发展和预后中的作用。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Al-MagsoosiMJN, LambertDW, Ali KhurramS, et al., 2021. Oral cancer stem cells drive tumourigenesis through activation of stromal fibroblasts. Oral Dis, 27(6):1383-1393. ![]() [2]BaiXP, NiJ, BeretovJ, et al., 2018. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev, 69:152-163. ![]() [3]BaillieR, TanST, ItinteangT, 2017. Cancer stem cells in oral cavity squamous cell carcinoma: a review. Front Oncol, 7:112. ![]() [4]BasatiG, MohammadpourH, Emami RazaviA, 2020. Association of high expression levels of SOX2, NANOG, and OCT4 in gastric cancer tumor tissues with progression and poor prognosis. J Gastrointest Cancer, 51(1):41-47. ![]() [5]BensonRA, LowreyJA, LambJR, et al., 2004. The Notch and Sonic hedgehog signalling pathways in immunity. Mol Immunol, 41(6-7):715-725. ![]() [6]BhardwajG, MurdochB, WuD, et al., 2001. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol, 2(2):172-180. ![]() [7]BourguignonLYW, WongG, EarleC, et al., 2012. Hyaluronan-CD44v3 interaction with Oct4-Sox2-Nanog promotes miR-302 expression leading to self-renewal, clonal formation, and cisplatin resistance in cancer stem cells from head and neck squamous cell carcinoma. J Biol Chem, 287(39):32800-32824. ![]() [8]BrayF, FerlayJ, SoerjomataramI, et al., 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 68(6):394-424. ![]() [9]CaiJH, HeBX, LiXM, et al., 2016. Regulation of tumorigenesis in oral epithelial cells by defined reprogramming factors Oct4 and Sox2. Oncol Rep, 36(2):651-658. ![]() [10]CaoYW, TianWT, CaoL, et al., 2022. Generation of an induced pluripotent stem cell JTUi005-A from a patient with neuronal intranuclear inclusion disease. Stem Cell Res, 65:102938. ![]() [11]CauffmanG, LiebaersI, van SteirteghemA, et al., 2006. POU5F1 isoforms show different expression patterns in human embryonic stem cells and preimplantation embryos. Stem Cells, 24(12):2685-2691. ![]() [12]ChangCC, ShiehGS, WuP, et al., 2008. Oct-3/4 expression reflects tumor progression and regulates motility of bladder cancer cells. Cancer Res, 68(15):6281-6291. ![]() [13]ChenBR, ZhuZP, LiLL, et al., 2019. Effect of overexpression of Oct4 and Sox2 genes on the biological and oncological characteristics of gastric cancer cells. Onco Targets Ther, 12:4667-4682. ![]() [14]ChenTM, HuangCM, HsiehMS, et al., 2022. TRPM7 via calcineurin/NFAT pathway mediates metastasis and chemotherapeutic resistance in head and neck squamous cell carcinoma. Aging, 14(12):5250-5270. ![]() [15]ChienCS, WangML, ChuPY, et al., 2015. Lin28B/Let-7 regulates expression of Oct4 and Sox2 and reprograms oral squamous cell carcinoma cells to a stem-like state. Cancer Res, 75(12):2553-2565. ![]() [16]ChiouSH, YuCC, HuangCY, et al., 2008. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res, 14(13):4085-4095. ![]() [17]CurtarelliRB, GonçalvesJM, dos SantosLGP, et al., 2018. Expression of cancer stem cell biomarkers in human head and neck carcinomas: a systematic review. Stem Cell Rev Rep, 14(6):769-784. ![]() [18]da SilvaSD, HierM, MlynarekA, et al., 2012. Recurrent oral cancer: current and emerging therapeutic approaches. Front Pharmacol, 3:149. ![]() [19]DaiXM, GuoYX, HuY, et al., 2021. Immunotherapy for targeting cancer stem cells in hepatocellular carcinoma. Theranostics, 11(7):3489-3501. ![]() [20]DengKY, LiuL, TanXM, et al., 2020. Wip1 promotes cancer stem cell properties by inhibiting p38 MAPK in NSCLC. Signal Transduct Target Ther, 5:36. ![]() [21]DiévartA, BeaulieuN, JolicoeurP, 1999. Involvement of Notch1 in the development of mouse mammary tumors. Oncogene, 18(44):5973-5981. ![]() [22]FanZN, LiMX, ChenXB, et al., 2017. Prognostic value of cancer stem cell markers in head and neck squamous cell carcinoma: a meta-analysis. Sci Rep, 7:43008. ![]() [23]FengJ, LiYX, WenN, 2021. Characterization of cancer stem cell characteristics and development of a prognostic stemness index cell-related signature in oral squamous cell carcinoma. Dis Markers, 2021:1571421. ![]() [24]FuTY, HsiehIC, ChengJT, et al., 2016. Association of OCT4, SOX2, and NANOG expression with oral squamous cell carcinoma progression. J Oral Pathol Med, 45(2):89-95. ![]() [25]FujiiM, KataseN, LefeuvreM, et al., 2011. Dickkopf (Dkk)-3 and β-catenin expressions increased in the transition from normal oral mucosal to oral squamous cell carcinoma. J Mol Histol, 42(6):499-504. ![]() [26]GatU, DasguptaR, DegensteinL, et al., 1998. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell, 95(5):605-614. ![]() [27]GhaziN, AaliN, ShahrokhiVR, et al., 2020. Relative expression of SOX2 and OCT4 in oral squamous cell carcinoma and oral epithelial dysplasia. Rep Biochem Mol Biol, 9(2):171-179. ![]() [28]GimpleRC, BhargavaS, DixitD, et al., 2019. Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes Dev, 33(11-12):591-609. ![]() [29]GliagiasV, WotmanM, HermanSW, et al., 2019. Investigating the role of octamer binding transcription factor-4 (Oct-4) in oral cavity squamous cell carcinoma: a systematic review and meta-analysis. Am J Otolaryngol, 40(2):282-288. ![]() [30]GriffinJD, LowenbergB, 1986. Clonogenic cells in acute myeloblastic leukemia. Blood, 68(6):1185-1195. ![]() [31]GuptaS, KumarP, DasBC, 2021. HPV+ve/-ve oral-tongue cancer stem cells: a potential target for relapse-free therapy. Transl Oncol, 14(1):100919. ![]() [32]HanD, WuGM, ChenR, et al., 2022. A balanced Oct4 interactome is crucial for maintaining pluripotency. Sci Adv, 8(7):eabe4375. ![]() [33]HeSQ, ZhangW, LiX, et al., 2021. Oral squamous cell carcin ![]() [34]oma (OSCC)-derived exosomal MiR-221 targets and regulates phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) to promote human umbilical vein endothelial cells migration and tube formation. Bioengineered, 12(1):2164-2174. ![]() [35]HengWS, GosensR, KruytFAE, 2019. Lung cancer stem cells: origin, features, maintenance mechanisms and therapeutic targeting. Biochem Pharmacol, 160:121-133. ![]() [36]HerrW, ClearyMA, 1995. The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev, 9(14):1679-1693. ![]() [37]HuangCF, XuXR, WuTF, et al., 2014. Correlation of ALDH1, CD44, OCT4 and SOX2 in tongue squamous cell carcinoma and their association with disease progression and prognosis. J Oral Pathol Med, 43(7):492-498. ![]() [38]HuangGZ, WuQQ, ZhengZN, et al., 2020. M6A-related bioinformatics analysis reveals that HNRNPC facilitates progression of OSCC via EMT. Aging, 12(12):11667-11684. ![]() [39]IliaK, ShakibaN, BinghamT, et al., 2023. Synthetic genetic circuits to uncover and enforce the OCT4 trajectories of successful reprogramming of human fibroblasts. bioRxiv, preprint. ![]() [40]IwaiS, YonekawaA, HaradaC, et al., 2010. Involvement of the Wnt-β-catenin pathway in invasion and migration of oral squamous carcinoma cells. Int J Oncol, 37(5):1095-1103. ![]() [41]KaranuFN, MurdochB, GallacherL, et al., 2000. The Notch ligand Jagged-1 represents a novel growth factor of human hematopoietic stem cells. J Exp Med, 192(9):1365-1372. ![]() [42]KarhadkarSS, BovaGS, AbdallahN, et al., 2004. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature, 431(7009):707-712. ![]() [43]KhanW, AugustineD, RaoRS, et al., 2018. Stem cell markers SOX-2 and OCT-4 enable to resolve the diagnostic dilemma between ameloblastic carcinoma and aggressive solid multicystic ameloblastoma. Adv Biomed Res, 7:149. ![]() [44]KimRJ, NamJS, 2011. OCT4 expression enhances features of cancer stem cells in a mouse model of breast cancer. Lab Anim Res, 27(2):147-152. ![]() [45]KongQY, LiuL, HuangYJ, et al., 2014. The effect of octamer-binding transcription factor 4B1 on microRNA signals in human dental pulp cells with inflammatory response. J Endod, 40(1):101-108. ![]() [46]KotoulaV, PapamichosSI, LambropoulosAF, 2008. Revisiting OCT4 expression in peripheral blood mononuclear cells. Stem Cells, 26(1):290-291. ![]() [47]LathiaJD, MackSC, Mulkearns-HubertEE, et al., 2015. Cancer stem cells in glioblastoma. Genes Dev, 29(12):1203-1217. ![]() [48]LeeJ, KimHK, RhoJY, et al., 2006. The human OCT-4 isoforms differ in their ability to confer self-renewal. J Biol Chem, 281(44):33554-33565. ![]() [49]LeeSH, KieuC, MartinCE, et al., 2019. NFATc3 plays an oncogenic role in oral/oropharyngeal squamous cell carcinomas by promoting cancer stemness via expression of OCT4. Oncotarget, 10(23):2306-2319. ![]() [50]LiH, WangLW, ShiSP, et al., 2019. The prognostic and clinicopathologic characteristics of OCT4 and lung cancer: a meta-analysis. Curr Mol Med, 19(1):54-75. ![]() [51]LiuL, HuangR, YangRQ, et al., 2017. OCT4B1 regulates the cellular stress response of human dental pulp cells with inflammation. Biomed Res Int, 2017:2756891. ![]() [52]LiuLK, JiangXY, ZhouXX, et al., 2010. Upregulation of vimentin and aberrant expression of E-cadherin/β-catenin complex in oral squamous cell carcinomas: correlation with the clinicopathological features and patient outcome. Mod Pathol, 23(2):213-224. ![]() [53]LiuYC, YehCT, LinKH, 2020. Cancer stem cell functions in hepatocellular carcinoma and comprehensive therapeutic strategies. Cells, 9(6):1331. ![]() [54]LiuYF, YangM, LuoJJ, et al., 2020. Radiotherapy targeting cancer stem cells “awakens” them to induce tumour relapse and metastasis in oral cancer. Int J Oral Sci, 12:19. ![]() [55]LuCS, ShiehGS, WangCT, et al., 2017. Chemotherapeutics-induced Oct4 expression contributes to drug resistance and tumor recurrence in bladder cancer. Oncotarget, 8(19):30844-30858. ![]() [56]LuCS, ShiauAL, SuBH, et al., 2020. Oct4 promotes M2 macrophage polarization through upregulation of macrophage colony-stimulating factor in lung cancer. J Hematol Oncol, 13:62. ![]() [57]LuHQ, XieYYR, TranL, et al., 2020. Chemotherapy-induced S100A10 recruits KDM6A to facilitate OCT4-mediated breast cancer stemness. J Clin Invest, 130(9):4607-4623. ![]() [58]MaZ, ZhangC, LiuXT, et al., 2020. Characterisation of a subpopulation of CD133+ cancer stem cells from Chinese patients with oral squamous cell carcinoma. Sci Rep, 10:8875. ![]() [59]MishraS, TiwariV, AroraA, et al., 2020. Increased expression of Oct4, Nanog and CD24 predicts poor response to chemo-radiotherapy and unfavourable prognosis in locally advanced oral squamous cell carcinoma. Asian Pac J Cancer Prev, 21(9):2539-2547. ![]() [60]MoroJDS, MaronezeMC, ArdenghiTM, et al., 2018. Oral and oropharyngeal cancer: epidemiology and survival analysis. Einstein (Sao Paulo), 16(2):eAO4248. ![]() [61]NainiFB, AminishakibP, AbdollahiA, et al., 2019. Relative expression of OCT4, SOX2 and NANOG in oral squamous cell carcinoma versus adjacent non-tumor tissue. Asian Pac J Cancer Prev, 20(6):1649-1654. ![]() [62]NamY, AsterJC, BlacklowSC, 2002. Notch signaling as a therapeutic target. Curr Opin Chem Biol, 6(4):501-509. ![]() [63]NathansenJ, LukiyanchukV, HeinL, et al., 2021. Oct4 confers stemness and radioresistance to head and neck squamous cell carcinoma by regulating the homologous recombination factors PSMC3IP and RAD54L. Oncogene, 40(24):4214-4228. ![]() [64]NguyenA, KimAH, KangMK, et al., 2022. Chronic alcohol exposure promotes cancer stemness and glycolysis in oral/oropharyngeal squamous cell carcinoma cell lines by activating NFAT signaling. Int J Mol Sci, 23(17):9779. ![]() [65]NicholsJ, ZevnikB, AnastassiadisK, et al., 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95(3):379-391. ![]() [66]NickoloffBJ, OsborneBA, MieleL, 2003. Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene, 22(42):6598-6608. ![]() [67]NörC, ZhangZC, WarnerKA, et al., 2014. Cisplatin induces Bmi-1 and enhances the stem cell fraction in head and neck cancer. Neoplasia, 16(2):137-146, W8. ![]() [68]NotoZ, YoshidaT, OkabeM, et al., 2013. CD44 and SSEA-4 positive cells in an oral cancer cell line HSC-4 possess cancer stem-like cell characteristics. Oral Oncol, 49(8):787-795. ![]() [69]OkamotoA, ChikamatsuK, SakakuraK, et al., 2009. Expansion and characterization of cancer stem-like cells in squamous cell carcinoma of the head and neck. Oral Oncol, 45(7):633-639. ![]() [70]Olivares-UrbanoMA, Griñán-LisónC, MarchalJA, et al., 2020. CSC radioresistance: a therapeutic challenge to improve radiotherapy effectiveness in cancer. Cells, 9(7):1651. ![]() [71]OlsenCL, HsuPP, GlienkeJ, et al., 2004. Hedgehog-interacting protein is highly expressed in endothelial cells but down-regulated during angiogenesis and in several human tumors. BMC Cancer, 4:43. ![]() [72]OshimoriN, 2020. Cancer stem cells and their niche in the progression of squamous cell carcinoma. Cancer Sci, 111(11):3985-3992. ![]() [73]PaiS, YadavVK, KuoKT, et al., 2021. PDK1 inhibitor BX795 improves cisplatin and radio-efficacy in oral squamous cell carcinoma by downregulating the PDK1/CD47/Akt-mediated glycolysis signaling pathway. Int J Mol Sci, 22(21):11492. ![]() [74]PandianJ, PanneerpandianP, SekarBT, et al., 2022. OCT4-mediated transcription confers oncogenic advantage for a subset of gastric tumors with poor clinical outcome. Funct Integr Genomics, 22(6):1345-1360. ![]() [75]PangX, WangSS, ZhangM, et al., 2021. OSCC cell-secreted exosomal CMTM6 induced M2-like macrophages polarization via ERK1/2 signaling pathway. Cancer Immunol Immunother, 70(4):1015-1029. ![]() [76]PesceM, ScholerHR, 2001. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells, 19(4):271-278. ![]() [77]QuaglinoE, ContiL, CavalloF, 2020. Breast cancer stem cell antigens as targets for immunotherapy. Semin Immunol, 47:101386. ![]() [78]RaoRS, RajuKL, AugustineD, et al., 2020. Prognostic significance of ALDH1, Bmi1, and OCT4 expression in oral epithelial dysplasia and oral squamous cell carcinoma. Cancer Control, 27(1):1073274820904959. ![]() [79]RastiA, MehrazmaM, MadjdZ, et al., 2018. Co-expression of cancer stem cell markers OCT4 and NANOG predicts poor prognosis in renal cell carcinomas. Sci Rep, 8:11739. ![]() [80]RavindranG, DevarajH, 2012. Aberrant expression of β-catenin and its association with ΔNp63, Notch-1, and clinicopathological factors in oral squamous cell carcinoma. Clin Oral Investig, 16(4):1275-1288. ![]() [81]RavindranG, SawantSS, HagueA, et al., 2015. Association of differential β-catenin expression with Oct-4 and nanog in oral squamous cell carcinoma and their correlation with clinicopathological factors and prognosis. Head Neck, 37(7):982-993. ![]() [82]ReersS, PfannerstillAC, MaushagenR, et al., 2014. Stem cell profiling in head and neck cancer reveals an Oct-4 expressing subpopulation with properties of chemoresistance. Oral Oncol, 50(3):155-162. ![]() [83]ReyaT, MorrisonSJ, ClarkeMF, et al., 2001. Stem cells, cancer, and cancer stem cells. Nature, 414(6859):105-111. ![]() [84]RizzinoA, WuebbenEL, 2016. Sox2/Oct4: a delicately balanced partnership in pluripotent stem cells and embryogenesis. Biochim Biophys Acta, 1859(6):780-791. ![]() [85]RodiniCO, LopesNM, LaraVS, et al., 2017. Oral cancer stem cells ‒ properties and consequences. J Appl Oral Sci, 25(6):708-715. ![]() [86]RodriguesMFSD, de Aquino XavierFC, AndradeNP, et al., 2018. Prognostic implications of CD44, NANOG, OCT4, and BMI1 expression in tongue squamous cell carcinoma. Head Neck, 40(8):1759-1773. ![]() [87]RoyS, KarM, RoyS, et al., 2019. KLF4 expression in the surgical cut margin is associated with disease relapse of oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol, 128(2):154-165. ![]() [88]SatputePS, HazareyV, AhmedR, et al., 2013. Cancer stem cells in head and neck squamous cell carcinoma: a review. Asian Pac J Cancer Prev, 14(10):5579-5587. ![]() [89]SawantS, GokulanR, DongreH, et al., 2016. Prognostic role of Oct4, CD44 and c-Myc in radio-chemo-resistant oral cancer patients and their tumourigenic potential in immunodeficient mice. Clin Oral Invest, 20(1):43-56. ![]() [90]SharifzadF, GhavamiS, VerdiJ, et al., 2019. Glioblastoma cancer stem cell biology: potential theranostic targets. Drug Resist Updat, 42:35-45. ![]() [91]ShenHF, LiYL, HuangSH, et al., 2022. A real-time pluripotency reporter for the long-term and real-time monitoring of pluripotency changes in induced pluripotent stem cells. Aging, 14(10):4445-4458. ![]() [92]ShinKH, KimRH, 2018. An updated review of oral cancer stem cells and their stemness regulation. Crit Rev Oncog, 23(3-4):189-200. ![]() [93]SiegelRL, MillerKD, JemalA, 2019. Cancer statistics, 2019. CA Cancer J Clin, 69(1):7-34. ![]() [94]SinghA, SrivastavaAN, AkhtarS, et al., 2018. Correlation of CD133 and Oct-4 expression with clinicopathological and demographic parameters in oral squamous cell carcinoma patients. Natl J Maxillofac Surg, 9(1):8-13. ![]() [95]SongJ, ChangI, ChenZ, et al., 2010. Characterization of side populations in HNSCC: highly invasive, chemoresistant and abnormal Wnt signaling. PLoS ONE, 5(7):e11456. ![]() [96]SunL, XuYR, ZhangXM, et al., 2020. Mesenchymal stem cells functionalized sonodynamic treatment for improving therapeutic efficacy and compliance of orthotopic oral cancer. Adv Mater, 32(48):e2005295. ![]() [97]SwainN, ThakurM, PathakJ, et al., 2020. SOX2, OCT4 and NANOG: the core embryonic stem cell pluripotency regulators in oral carcinogenesis. J Oral Maxillofac Pathol, 24(2):368-373. ![]() [98]TahmasebiE, AlikhaniM, YazdanianA, et al., 2020. The current markers of cancer stem cell in oral cancers. Life Sci, 249:117483. ![]() [99]TegginamaniAS, ShivakumarVH, KallarakkalTG, et al., 2020. Analysis of octamer-binding transcription factor-4 expression in oral leukoplakia. J Oral Maxillofac Pathol, 24(2):400. ![]() [100]ThomaidouAC, BatsakiP, AdamakiM, et al., 2022. Promising biomarkers in head and neck cancer: the most clinically important miRNAs. Int J Mol Sci, 23(15):8257. ![]() [101]TsaiLL, HuFW, LeeSS, et al., 2014. Oct4 mediates tumor initiating properties in oral squamous cell carcinomas through the regulation of epithelial-mesenchymal transition. PLoS ONE, 9(1):e87207. ![]() [102]TulakeW, YuemaierR, ShengL, et al., 2018. Upregulation of stem cell markers ALDH1A1 and OCT4 as potential biomarkers for the early detection of cervical carcinoma. Oncol Lett, 16(5):5525-5534. ![]() [103]UndenAB, HolmbergE, Lundh-RozellB, et al., 1996. Mutations in the human homologue of Drosophila patched (PTCH) in basal cell carcinomas and the gorlin syndrome: different in vivo mechanisms of PTCH inactivation. Cancer Res, 56(20):4562-4565. ![]() [104]Varnum-FinneyB, XuLW, Brashem-SteinC, et al., 2000. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med, 6(11):1278-1281. ![]() [105]VijayakumarG, NarwalA, KambojM, et al., 2020. Association of SOX2, OCT4 and WNT5A expression in oral epithelial dysplasia and oral squamous cell carcinoma: an immunohistochemical study. Head Neck Pathol, 14(3):749-757. ![]() [106]WangYF, CaoZ, LiuFJ, et al., 2021. Clinical significance of activated Wnt/β-catenin signaling in apoptosis inhibition of oral cancer. Open Life Sci, 16(1):1045-1052. ![]() [107]WangYJ, MengL, HuHY, et al., 2011. Oct-4B isoform is differentially expressed in breast cancer cells: hypermethylation of regulatory elements of Oct-4A suggests an alternative promoter and transcriptional start site for Oct-4B transcription. Biosci Rep, 31(2):109-115. ![]() [108]WenKM, FuZX, WuXY, et al., 2013. Oct-4 is required for an antiapoptotic behavior of chemoresistant colorectal cancer cells enriched for cancer stem cells: effects associated with STAT3/survivin. Cancer Lett, 333(1):56-65. ![]() [109]WongMMT, ChanHY, AzizNA, et al., 2021. Interplay of autophagy and cancer stem cells in hepatocellular carcinoma. Mol Biol Rep, 48(4):3695-3717. ![]() [110]WuQ, WuZ, BaoCY, et al., 2019. Cancer stem cells in esophageal squamous cell cancer (review). Oncol Lett, 18(5):5022-5032. ![]() [111]XieWW, YuJ, YinYJ, et al., 2022. OCT4 induces EMT and promotes ovarian cancer progression by regulating the PI3K/AKT/mTOR pathway. Front Oncol, 12:876257. ![]() [112]YangF, XuJ, TangL, et al., 2017. Breast cancer stem cell: the roles and therapeutic implications. Cell Mol Life Sci, 74(6):951-966. ![]() [113]YangPP, LiCS, ZhouQ, et al., 2022. Notum leads to potential pro-survival of OSCC through crosstalk between Shh and Wnt/β-catenin signaling via p-GSK3β. Int J Biochem Cell Biol, 153:106316. ![]() [114]YuanFJ, ZhouWB, ZouC, et al., 2010. Expression of Oct4 in HCC and modulation to wnt/β-catenin and TGF-β signal pathways. Mol Cell Biochem, 343(1-2):155-162. ![]() [115]ZhanT, RindtorffN, BoutrosM, 2017. Wnt signaling in cancer. Oncogene, 36(11):1461-1473. ![]() [116]ZhangJM, WeiK, JiangM, 2018. OCT4 but not SOX2 expression correlates with worse prognosis in surgical patients with triple-negative breast cancer. Breast Cancer, 25(4):447-455. ![]() [117]ZhangL, MengX, ZhuXW, et al., 2019. Long non-coding RNAs in oral squamous cell carcinoma: biologic function, mechanisms and clinical implications. Mol Cancer, 18:102. ![]() [118]ZhangQZ, ShiSH, YenY, et al., 2010. A subpopulation of CD133+ cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett, 289(2):151-160. ![]() [119]ZhaoXY, LuH, SunY, et al., 2020. Prognostic value of octamer binding transcription factor 4 for patients with solid tumors: a meta-analysis. Medicine (Baltimore), 99(42):e22804. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>