CLC number:
On-line Access: 2024-08-27
Received: 2023-10-17
Revision Accepted: 2024-05-08
Crosschecked: 2024-01-02
Cited: 0
Clicked: 2096
Mingming XU, Zhaoliang LIU, Wenhua HU, Ying HAN, Zhen WU, Sufeng CHEN, Peng XIA, Jing DU, Xumin ZHANG, Piliang HAO, Jun XIA, Shuang YANG. Mass spectrometry analysis of intact protein N-glycosylation signatures of cells and sera in pancreatic adenocarcinomas[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2200652 @article{title="Mass spectrometry analysis of intact protein N-glycosylation signatures of cells and sera in pancreatic adenocarcinomas", %0 Journal Article TY - JOUR
胰腺癌细胞和血清完整蛋白质N-糖基化特征的质谱分析1苏州大学药学院临床质谱中心,中国苏州市,215123 2上海科技大学生命科学与技术学院,中国上海市,201210 3复旦大学生命科学学院生物化学系基因工程国家重点实验室,中国上海市,200438 4杭州医学院附属浙江省人民医院临床实验中心,中国杭州市,310014 摘要:胰腺癌作为最恶性的癌症之一,早期干预是提高生存率的关键。目前尚无可靠的方法对其发展为恶性肿瘤进行早期识别,因此在胰腺肿瘤发生过程中发现早期分子变化的要求迫在眉睫。异常糖基化与癌症进展密切相关,对将糖基化变化作为胰腺癌诊断的生物标记物已有较多研究,但详细的糖组学信息,尤其是胰腺癌在药物治疗前后的位点特异性N-糖基化变化研究,仍需进一步深入。本研究采用综合性固相化学酶糖组学手段,对胰腺癌细胞和患者血清中的聚糖、糖基化位点和完整糖肽展开分析。癌症细胞中N-聚糖的分析结果显示,原位肿瘤MIA PaCa-2细胞分泌的糖蛋白增加,然而含有较多分泌糖蛋白的人类血清在其特定糖基化位点上的聚糖却发生了显著变化。上述结果表明,肿瘤特异性糖基化可作为胰腺癌诊断的潜在生物标志物。此外,本研究发现抗KRAS G12C突变的小分子抑制剂AMG-510可显著降低MIA PaCa-2细胞的糖基化水平,这表明KRAS在细胞糖基化过程中发挥抑制作用,将有助于AMG-510的抗肿瘤作用。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Abd-El-HalimYM, el KaoutariA, SilvyF, et al., 2021. A glycosyltransferase gene signature to detect pancreatic ductal adenocarcinoma patients with poor prognosis. eBioMedicine, 71:103541. ![]() [2]Afshar-KharghanV, 2017. The role of the complement system in cancer. J Clin Invest, 127(3):780-789. ![]() [3]ArditoCM, GrünerBM, TakeuchiKK, et al., 2012. EGF receptor is required for KRAS-induced pancreatic tumorigenesis. Cancer Cell, 22(3):304-317. ![]() [4]BassagañasS, CarvalhoS, DiasAM, et al., 2014. Pancreatic cancer cell glycosylation regulates cell adhesion and invasion through the modulation of α2β1 integrin and E-cadherin function. PLoS ONE, 9(5):e98595. ![]() [5]CanonJ, RexK, SaikiAY, et al., 2019. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature, 575(7781):217-223. ![]() [6]CaoLW, LihTM, HuYW, et al., 2022. Characterization of core fucosylation via sequential enzymatic treatments of intact glycopeptides and mass spectrometry analysis. Nat Commun, 13:3910. ![]() [7]CeroniA, MaassK, GeyerH, et al., 2008. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res, 7(4):1650-1659. ![]() [8]ChenHH, DengZA, HuangCC, et al., 2017. Mass spectrometric profiling reveals association of N-glycan patterns with epithelial ovarian cancer progression. Tumour Biol, 39(7):1010428317716249. ![]() [9]ChenJ, WuW, ChenLJ, et al., 2013. Profiling the potential tumor markers of pancreatic ductal adenocarcinoma using 2D-DIGE and MALDI-TOF-MS: up-regulation of Complement C3 and alpha-2-HS-glycoprotein. Pancreatology, 13(3):290-297. ![]() [10]deLeoz MLA, YoungLJT, AnHJ, et al., 2011. High-mannose glycans are elevated during breast cancer progression. Mol Cell Proteomics, 10(1):M110.002717. ![]() [11]EsmailS, ManolsonMF, 2021. Advances in understanding N-glycosylation structure, function, and regulation in health and disease. Eur J Cell Biol, 100(7-8):151186. ![]() [12]GaoZR, LingXY, ShiCY, et al., 2022. Tumor immune checkpoints and their associated inhibitors. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(10):823-843. ![]() [13]GoldG, GohSK, ChristophiC, et al., 2019. Dilemmas and limitations interpreting carbohydrate antigen 19-9 elevation after curative pancreatic surgery: a case report. Int J Surg Case Rep, 54:20-22. ![]() [14]HolstS, BeloAI, GiovannettiE, et al., 2017. Profiling of different pancreatic cancer cells used as models for metastatic behaviour shows large variation in their N-glycosylation. Sci Rep, 7:16623. ![]() [15]HrubanRH, PetersenGM, HaPK, et al., 1998. Genetics of pancreatic cancer: from genes to families. Surg Oncol Clin North Am, 7(1):1-23. ![]() [16]HuHF, YeZ, QinY, et al., 2021. Mutations in key driver genes of pancreatic cancer: molecularly targeted therapies and other clinical implications. Acta Pharmacol Sin, 42(11):1725-1741. ![]() [17]LeeSJ, EversS, RoederD, et al., 2002. Mannose receptor-mediated regulation of serum glycoprotein homeostasis. Science, 295(5561):1898-1901. ![]() [18]LevinkIJM, KlatteDCF, Hanna-SawiresRG, et al., 2022. Longitudinal changes of serum protein N-Glycan levels for earlier detection of pancreatic cancer in high-risk individuals. Pancreatology, 22(4):497-506. ![]() [19]LiangY, WangW, FangC, et al., 2016. Clinical significance and diagnostic value of serum CEA, CA19-9 and CA72-4 in patients with gastric cancer. Oncotarget, 7(31):49565-49573. ![]() [20]LinYS, TamakoshiA, KikuchiS, et al., 2004. Serum insulin-like growth factor-I, insulin-like growth factor binding protein-3, and the risk of pancreatic cancer death. Int J Cancer, 110(4):584-588. ![]() [21]LiuLY, ZhuB, FangZ, et al., 2021. Automated intact glycopeptide enrichment method facilitating highly reproducible analysis of serum site-specific N-glycoproteome. Anal Chem, 93(20):7473-7480. ![]() [22]LuHR, XiaoKJ, TianZX, 2021. Benchmark of site- and structure-specific quantitative tissue N-glycoproteomics for discovery of potential N-glycoprotein markers: a case study of pancreatic cancer. Glycoconj J, 38(2):213-231. ![]() [23]LumibaoJC, TremblayJR, HsuJ, et al., 2022. Altered glycosylation in pancreatic cancer and beyond. J Exp Med, 219(6):e20211505. ![]() [24]MarrelliD, CarusoS, PedrazzaniC, et al., 2009. CA19-9 serum levels in obstructive jaundice: clinical value in benign and malignant conditions. Am J Surg, 198(3):333-339. ![]() [25]MaxwellE, TanY, TanYX, et al., 2012. GlycReSoft: a software package for automated recognition of glycans from LC/MS data. PLoS ONE, 7(9):e45474. ![]() [26]MofidMR, GheysarzadehA, BakhtiyariS, 2020. Insulin-like growth factor binding protein 3 chemosensitizes pancreatic ductal adenocarcinoma through its death receptor. Pancreatology, 20(7):1442-1450. ![]() [27]MunkleyJ, 2019. The glycosylation landscape of pancreatic cancer (Review). Oncol Lett, 17(3):2569-2575. ![]() [28]NarayanasamyA, AhnJM, SungHJ, et al., 2011. Fucosylated glycoproteomic approach to identify a complement component 9 associated with squamous cell lung cancer (SQLC). J Proteomics, 74(12):2948-2958. ![]() [29]NieS, LoA, WuJ, et al., 2014. Glycoprotein biomarker panel for pancreatic cancer discovered by quantitative proteomics analysis. J Proteome Res, 13(4):1873-1884. ![]() [30]PanS, TamuraY, ChenR, et al., 2012. Large-scale quantitative glycoproteomics analysis of site-specific glycosylation occupancy. Mol Biosyst, 8(11):2850-2856. ![]() [31]PanS, ChenR, TamuraY, et al., 2014. Quantitative glycoproteomics analysis reveals changes in N-glycosylation level associated with pancreatic ductal adenocarcinoma. J Proteome Res, 13(3):1293-1306. ![]() [32]ParkHM, HwangMP, KimYW, et al., 2015. Mass spectrometry-based N-linked glycomic profiling as a means for tracking pancreatic cancer metastasis. Carbohydr Res, 413:5-11. ![]() [33]PrestonRJS, RawleyO, GleesonEM, et al., 2013. Elucidating the role of carbohydrate determinants in regulating hemostasis: insights and opportunities. Blood, 121(19):3801-3810. ![]() [34]ReilyC, StewartTJ, RenfrowMB, et al., 2019. Glycosylation in health and disease. Nat Rev Nephrol, 15(6):346-366. ![]() [35]RhoJH, MeadJR, WrightWS, et al., 2014. Discovery of sialyl Lewis A and Lewis X modified protein cancer biomarkers using high density antibody arrays. J Proteomics, 96:291-299. ![]() [36]RoopenianDC, AkileshS, 2007. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol, 7(9):715-725. ![]() [37]RyanDP, HongTS, BardeesyN, 2014. Pancreatic adenocarcin ![]() [38]oma. N Engl J Med, 371(11):1039-1049. ![]() [39]SatoY, FujimotoD, UeharaK, et al., 2016. The prognostic value of serum CA 19-9 for patients with advanced lung adenocarcinoma. BMC Cancer, 16:890. ![]() [40]SethiMK, HancockWS, FanayanS, 2016. Identifying N-glycan biomarkers in colorectal cancer by mass spectrometry. Acc Chem Res, 49(10):2099-2106. ![]() [41]SungH, FerlayJ, SiegelRL, et al., 2021. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 71(3):209-249. ![]() [42]Talar-WojnarowskaR, GasiorowskaA, OlakowskiM, et al., 2011. Clinical value of serum neopterin, tissue polypeptide-specific antigen and CA19-9 levels in differential diagnosis between pancreatic cancer and chronic pancreatitis. Pancreatology, 10(6):689-694. ![]() [43]TaparraK, WangHL, MalekR, et al., 2018. O-GlcNAcylation is required for mutant KRAS-induced lung tumorigenesis. J Clin Invest, 128(11):4924-4937. ![]() [44]VreekerGCM, Hanna-SawiresRG, MohammedY, et al., 2020. Serum N-Glycome analysis reveals pancreatic cancer disease signatures. Cancer Med, 9(22):8519-8529. ![]() [45]Vukobrat-BijedicZ, Husic-SelimovicA, SoficA, et al., 2013. Cancer antigens (CEA and CA 19-9) as markers of advanced stage of colorectal carcinoma. Med Arch, 67(6):397-401. ![]() [46]XiaoHP, SunFX, SuttapitugsakulS, et al., 2019. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. Mass Spectrom Rev, 38(4-5):356-379. ![]() [47]XuMM, HuWH, LiuZL, et al., 2021. Glycoproteomic bioanalysis of exosomes by LC‒MS for early diagnosis of pancreatic cancer. Bioanalysis, 13(11):861-864. ![]() [48]XuMM, JinH, WuZ, et al., 2022. Mass spectrometry-based analysis of serum N-glycosylation changes in patients with Parkinson’s disease. ACS Chem Neurosci, 13(12):1719-1726. ![]() [49]YangS, LiY, ShahP, et al., 2013. Glycomic analysis using glycoprotein immobilization for glycan extraction. Anal Chem, 85(11):5555-5561. ![]() [50]YangS, JankowskaE, KosikovaM, et al., 2017. Solid-phase chemical modification for sialic acid linkage analysis: application to glycoproteins of host cells used in influenza virus propagation. Anal Chem, 89(17):9508-9517. ![]() [51]YangS, WuWW, ShenRF, et al., 2018. Identification of sialic acid linkages on intact glycopeptides via differential chemical modification using intactGIG-HILIC. J Am Soc Mass Spectrom, 29(6):1273-1283. ![]() [52]YangS, XiaJ, YangZR, et al., 2021. Lung cancer molecular mutations and abnormal glycosylation as biomarkers for early diagnosis. Cancer Treat Res Commun, 27:100311. ![]() [53]ZhangH, LiXJ, MartinDB, et al., 2003. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol, 21(6):660-666. ![]() [54]ZhangW, WangYY, DongX, et al., 2021. Elevated serum CA19-9 indicates severe liver inflammation and worse survival after curative resection in hepatitis B-related hepatocellular carcinoma. Biosci Trends, 15(6):397-405. ![]() [55]ZhaoJ, QiuWL, SimeoneDM, et al., 2007. N-linked glycosylation profiling of pancreatic cancer serum using capillary liquid phase separation coupled with mass spectrometric analysis. J Proteome Res, 6(3):1126-1138. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>