
CLC number:
On-line Access: 2025-03-13
Received: 2023-09-19
Revision Accepted: 2023-12-22
Crosschecked: 2025-03-13
Cited: 0
Clicked: 2604
Citations: Bibtex RefMan EndNote GB/T7714
Xiaoyu HAN, Peijun LI, Meiling JIANG, Yuanyuan CAO, Yingqi WANG, Linhong JIANG, Xiaodan LIU, Weibing WU. Autophagy in skeletal muscle dysfunction of chronic obstructive pulmonary disease: implications, mechanisms, and perspectives[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300680 @article{title="Autophagy in skeletal muscle dysfunction of chronic obstructive pulmonary disease: implications, mechanisms, and perspectives", %0 Journal Article TY - JOUR
自噬在慢性阻塞性肺疾病骨骼肌功能障碍中的作用、机制和展望1上海体育大学运动健康学院, 中国上海市, 200438 2上海中医药大学康复医学院, 中国上海市, 201203 3上海市中医药研究院康复医学研究所, 中国上海市, 201203 4中医智能康复教育部工程研究中心, 中国上海市, 201203 摘要:骨骼肌功能障碍是慢性阻塞性肺疾病(COPD)患者常见的肺外共病,与患者生活质量和存活率相关。自噬溶酶体途径作为机体蛋白水解系统,影响骨骼肌结构和功能。然而,促进和抑制自噬均被发现可显著改善COPD骨骼肌的结构和功能,但其中机制尚未可知。本文首先综述巨自噬和线粒体自噬对COPD骨骼肌结构和功能的作用,并进一步探究自噬介导COPD骨骼肌功能障碍的机制。结果表明,巨自噬和线粒体自噬相关蛋白在COPD骨骼肌中显著升高,促进巨自噬可显著提高COPD肌卫星细胞的肌生成和复制能力,而体外抑制COPD肌管巨自噬可增加肌管直径。线粒体自噬有助于通过清除COPD受损线粒体来维持线粒体稳态。综上,自噬作为改善COPD骨骼肌功能障碍的潜在靶点,仍需进一步研究其在调节COPD骨骼肌功能的具体机制,以加深对该领域的理解。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BaechlerBL, BloembergD, QuadrilateroJ, 2019. Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation. Autophagy, 15(9):1606-1619. ![]() [2]BalnisJ, DrakeLA, SingerDV, et al., 2022. Deaccelerated myogenesis and autophagy in genetically induced pulmonary emphysema. Am J Respir Cell Mol Biol, 66(6):623-637. ![]() [3]BellotG, Garcia-MedinaR, GounonP, et al., 2009. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol, 29(10):2570-2581. ![]() [4]BenzE, TrajanoskaK, LahousseL, et al., 2019. Sarcopenia in COPD: a systematic review and meta-analysis. Eur Respir Rev, 28(154):190049. ![]() [5]BernardS, LeblancP, WhittomF, et al., 1998. Peripheral muscle weakness in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 158(2):629-634. ![]() [6]BujakAL, CraneJD, LallyJS, et al., 2015. AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metab, 21(6):883-890. ![]() [7]CeelenJJM, ScholsAMWJ, van HoofSJ, et al., 2017. Differential regulation of muscle protein turnover in response to emphysema and acute pulmonary inflammation. Respir Res, 18(1):75. ![]() [8]ChenM, ChenZH, WangYY, et al., 2016. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy, 12(4):689-702. ![]() [9]ChenW, ChenYS, LiuYX, et al., 2022. Autophagy in muscle regeneration: potential therapies for myopathies. J Cachexia Sarcopenia Muscle, 13(3):1673-1685. ![]() [10]ChristensonSA, SmithBM, BafadhelM, et al., 2022. Chronic obstructive pulmonary disease. Lancet, 399(10342):2227-2242. ![]() [11]DebigaréR, CôtéCH, HouldFS, et al., 2003. In vitro and in vivo contractile properties of the vastus lateralis muscle in males with COPD. Eur Respir J, 21(2):273-278. ![]() [12]EldeebMA, ThomasRA, RaghebMA, et al., 2022. Mitochondrial quality control in health and in Parkinson’s disease. Physiol Rev, 102(4):1721-1755. ![]() [13]EvansRA, KaplovitchE, BeauchampMK, et al., 2015. Is quadriceps endurance reduced in COPD?: a systematic review. Chest, 147(3):673-684. ![]() [14]FaucherM, SteinbergJG, BarbierD, et al., 2004. Influence of chronic hypoxemia on peripheral muscle function and oxidative stress in humans. Clin Physiol Funct Imaging, 24(2):75-84. ![]() [15]FermontJM, MasconiKL, JensenMT, et al., 2019. Biomarkers and clinical outcomes in COPD: a systematic review and meta-analysis. Thorax, 74(5):439-446. ![]() [16]FiaccoE, CastagnettiF, BianconiV, et al., 2016. Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. Cell Death Differ, 23(11):1839-1849. ![]() [17]FivensonEM, LautrupS, SunN, et al., 2017. Mitophagy in neurodegeneration and aging. Neurochem Int, 109:202-209. ![]() [18]FranssenFME, BroekhuizenR, JanssenPP, et al., 2005. Limb muscle dysfunction in COPD: effects of muscle wasting and exercise training. Med Sci Sports Exerc, 37(1):2-9. ![]() [19]García-PratL, Martínez-VicenteM, PerdigueroE, et al., 2016. Autophagy maintains stemness by preventing senescence. Nature, 529(7584):37-42. ![]() [20]GiffordJR, TrinityJD, KwonOS, et al., 2018. Altered skeletal muscle mitochondrial phenotype in COPD: disease vs. disuse. J Appl Physiol, 124(4):1045-1053. ![]() [21]Global Initiatives for Chronic Obstructive Lung Disease, 2023. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease (2023 Report). https://goldcopd.org/2023-gold-report-2 ![]() [22]GouziF, BlaquièreM, CatteauM, et al., 2018. Oxidative stress regulates autophagy in cultured muscle cells of patients with chronic obstructive pulmonary disease. J Cell Physiol, 233(12):9629-9639. ![]() [23]GuoYT, GoskerHR, ScholsAMWJ, et al., 2013. Autophagy in locomotor muscles of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 188(11):1313-1320. ![]() [24]HeCC, BassikMC, MoresiV, et al., 2012. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature, 481(7382):511-515. ![]() [25]HenrotP, BlervaqueL, DupinI, et al., 2023. Cellular interplay in skeletal muscle regeneration and wasting: insights from animal models. J Cachexia Sarcopenia Muscle, 14(2):745-757. ![]() [26]HussainSNA, SandriM, 2013. Role of autophagy in COPD skeletal muscle dysfunction. J Appl Physiol, 114(9):1273-1281. ![]() [27]ItoA, HashimotoM, TanihataJ, et al., 2022. Involvement of Parkin-mediated mitophagy in the pathogenesis of chronic obstructive pulmonary disease-related sarcopenia. J Cachexia Sarcopenia Muscle, 13(3):1864-1882. ![]() [28]JaitovichA, BarreiroE, 2018. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. What we know and can do for our patients. Am J Respir Crit Care Med, 198(2):175-186. ![]() [29]JakobssonP, JorfeldtL, HenrikssonJ, 1995. Metabolic enzyme activity in the quadriceps femoris muscle in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 151(2):374-377. ![]() [30]JeongSJ, ZhangXY, Rodriguez-VelezA, et al., 2019. p62/SQSTM1 and selective autophagy in cardiometabolic diseases. Antioxid Redox Signal, 31(6):458-471. ![]() [31]KimJ, KunduM, ViolletB, et al., 2011. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol, 13(2):132-141. ![]() [32]KimKH, JeongYT, OhH, et al., 2013. Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med, 19(1):83-92. ![]() [33]KlionskyDJ, Abdel-AzizAK, AbdelfatahS, et al., 2021. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy, 17(1):1-382. ![]() [34]KneppersAEM, LangenRCJ, GoskerHR, et al., 2017. Increased myogenic and protein turnover signaling in skeletal muscle of chronic obstructive pulmonary disease patients with sarcopenia. J Am Med Dir Assoc, 18(7):637.e1-637.e11. ![]() [35]LakerRC, DrakeJC, WilsonRJ, et al., 2017. AMPK phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun, 8:548. ![]() [36]LazarouM, SliterDA, KaneLA, et al., 2015. The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature, 524(7565):309-314. ![]() [37]LeermakersPA, ScholsAMWJ, KneppersAEM, et al., 2018. Molecular signalling towards mitochondrial breakdown is enhanced in skeletal muscle of patients with chronic obstructive pulmonary disease (COPD). Sci Rep, 8:15007. ![]() [38]LeermakersPA, RemelsAHV, LangenRCJ, et al., 2020. Pulmonary inflammation-induced alterations in key regulators of mitophagy and mitochondrial biogenesis in murine skeletal muscle. BMC Pulm Med, 20:20. ![]() [39]LemireBB, DebigaréR, DubéA, et al., 2012. MAPK signaling in the quadriceps of patients with chronic obstructive pulmonary disease. J Appl Physiol, 113(1):159-166. ![]() [40]LinA, YaoJ, ZhuangL, et al., 2014. The FoxO‒BNIP3 axis exerts a unique regulation of mTORC1 and cell survival under energy stress. Oncogene, 33(24):3183-3194. ![]() [41]MadorMJ, BozkanatE, 2001. Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Respir Res, 2(4):216. ![]() [42]MaltaisF, DecramerM, CasaburiR, et al., 2014. An official American Thoracic Society/European Respiratory Society statement: update on limb muscle dysfunction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 189(9):e15-e62. ![]() [43]ManoY, TsukamotoM, WangKY, et al., 2022. Oxidative stress causes muscle structural alterations via p38 MAPK signaling in COPD mouse model. J Bone Miner Metab, 40(6):927-939. ![]() [44]MaoJ, LiY, FengSX, et al., 2020. Bufei Jianpi formula improves mitochondrial function and suppresses mitophagy in skeletal muscle via the adenosine monophosphate-activated protein kinase pathway in chronic obstructive pulmonary disease. Front Pharmacol, 11:587176. ![]() [45]MasonSE, Moreta-MartinezR, LabakiWW, et al., 2022. Longitudinal association between muscle loss and mortality in ever smokers. Chest, 161(4):960-970. ![]() [46]MathurS, BrooksD, CarvalhoCRF, 2014. Structural alterations of skeletal muscle in COPD. Front Physiol, 5:104. ![]() [47]MizushimaN, YoshimoriT, 2007. How to interpret LC3 immunoblotting. Autophagy, 3(6):542-545. ![]() [48]MizushimaN, LevineB, CuervoAM, et al., 2008. Autophagy fights disease through cellular self-digestion. Nature, 451(7182):1069-1075. ![]() [49]NatanekSA, Riddoch-ContrerasJ, MarshGS, et al., 2013. MuRF-1 and atrogin-1 protein expression and quadriceps fiber size and muscle mass in stable patients with COPD. COPD J Chronic Obstruct Pulm Dis, 10(5):618-624. ![]() [50]ParéMF, BaechlerBL, FajardoVA, et al., 2017. Effect of acute and chronic autophagy deficiency on skeletal muscle apoptotic signaling, morphology, and function. Biochim Biophys Acta Mol Cell Res, 1864(4):708-718. ![]() [51]PomièsP, RodriguezJ, BlaquièreM, et al., 2015. Reduced myotube diameter, atrophic signalling and elevated oxidative stress in cultured satellite cells from COPD patients. J Cell Mol Med, 19(1):175-186. ![]() [52]Puente-MaestuL, Pérez-ParraJ, GodoyR, et al., 2009. Abnormal mitochondrial function in locomotor and respiratory muscles of COPD patients. Eur Respir J, 33(5):1045-1052. ![]() [53]Puente-MaestuL, TejedorA, LázaroA, et al., 2012. Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress. Am J Respir Cell Mol Biol, 47(3):358-362. ![]() [54]Puente-MaestuL, LázaroA, HumanesB, 2013. Metabolic derangements in COPD muscle dysfunction. J Appl Physiol, 114(9):1282-1290. ![]() [55]Puig-VilanovaE, RodriguezDA, LloretaJ, et al., 2015. Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Free Radic Biol Med, 79:91-108. ![]() [56]RikkaS, QuinsayMN, ThomasRL, et al., 2011. Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ, 18(4):721-731. ![]() [57]RoigM, EngJJ, MacintyreDL, et al., 2011. Deficits in muscle strength, mass, quality, and mobility in people with chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev, 31(2):120-124. ![]() [58]RomanelloV, SandriM, 2016. Mitochondrial quality control and muscle mass maintenance. Front Physiol, 6:422. ![]() [59]SeymourJM, WardK, SidhuPS, et al., 2009. Ultrasound measurement of rectus femoris cross-sectional area and the relationship with quadriceps strength in COPD. Thorax, 64(5):418-423. ![]() [60]ShrikrishnaD, PatelM, TannerRJ, et al., 2012. Quadriceps wasting and physical inactivity in patients with COPD. Eur Respir J, 40(5):1115-1122. ![]() [61]SinghAK, KashyapMP, TripathiVK, et al., 2017. Neuroprotection through rapamycin-induced activation of autophagy and PI3K/Akt1/mTOR/CREB signaling against amyloid-βinduced oxidative stress, synaptic/neurotransmission dysfunction, and neurodegeneration in adult rats. Mol Neurobiol, 54(8):5815-5828. ![]() [62]SpositonT, OliveiraJM, RodriguesA, et al., 2022. Quadriceps weakness associated with mortality in individuals with chronic obstructive pulmonary disease. Ann Phys Rehabil Med, 65(5):101587. ![]() [63]SuLJ, ZhangJH, GomezH, et al., 2023. Mitochondria ROS and mitophagy in acute kidney injury. Autophagy, 19(2):401-414. ![]() [64]SuzukiK, AkiokaM, Kondo-KakutaC, et al., 2013. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J Cell Sci, 126(11):2534-2544. ![]() [65]SwallowEB, ReyesD, HopkinsonNS, et al., 2007. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax, 62(2):115-120. ![]() [66]TashiroH, TakahashiK, TanakaM, et al., 2021. Skeletal muscle is associated with exercise tolerance evaluated by cardiopulmonary exercise testing in Japanese patients with chronic obstructive pulmonary disease. Sci Rep, 11:15862. ![]() [67]ThériaultME, ParéMÈ, LemireBB, et al., 2014. Regenerative defect in vastus lateralis muscle of patients with chronic obstructive pulmonary disease. Respir Res, 15:35. ![]() [68]TorresSH, de OcaMM, LoebE, et al., 2011. Gender and skeletal muscle characteristics in subjects with chronic obstructive pulmonary disease. Respir Med, 105(1):88-94. ![]() [69]VermeerenMAP, CreutzbergEC, ScholsAMWJ, et al., 2006. Prevalence of nutritional depletion in a large out-patient population of patients with COPD. Respir Med, 100(8):1349-1355. ![]() [70]VestboJ, PrescottE, AlmdalT, et al., 2006. Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study. Am J Respir Crit Care Med, 173(1):79-83. ![]() [71]WangP, ShaoBZ, DengZQ, et al., 2018. Autophagy in ischemic stroke. Prog Neurobiol, 163-164:98-117. ![]() [72]World Health Organization, 2019. Chronic obstructive pulmonary disease (COPD). https://www.who.int/news-room/fact-sheets/detail/chronic-obstructive-pulmonary-disease-(copd) ![]() [73]ZhangLC, GongHY, SunQW, et al., 2018. Spermidine-activated satellite cells are associated with hypoacetylation in ACVR2B and Smad3 binding to myogenic genes in mice. J Agric Food Chem, 66(2):540-550. ![]() [74]ZorovDB, JuhaszovaM, SollottSJ, 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev, 94(3):909-950. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>