CLC number:
On-line Access: 2025-02-26
Received: 2023-11-16
Revision Accepted: 2024-03-19
Crosschecked: 2025-02-27
Cited: 0
Clicked: 1006
Shixu DU, Leqin FANG, Yuanhui LI, Shuai LIU, Xue LUO, Shufei ZENG, Shuqiong ZHENG, Hangyi YANG, Yan XU, Dai LI, Bin ZHANG. Association between post-COVID-19 sleep disturbance and neurocognitive function: a comparative study based on propensity score matching[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300831 @article{title="Association between post-COVID-19 sleep disturbance and neurocognitive function: a comparative study based on propensity score matching", %0 Journal Article TY - JOUR
COVID-19后睡眠紊乱与神经认知功能之间的关系:基于倾向评分匹配方法的研究1南方医科大学南方医院精神心理科(睡眠医学中心),中国广州市,510515 2精神健康研究教育部重点实验室,中国广州市,510515 3阿呆科技(北京)有限公司,中国北京市,100083 摘要:睡眠紊乱和神经认知功能减退是2019冠状病毒病(COVID-19)幸存者常见的主诉,然而既往少有研究关注COVID-19后睡眠紊乱(PCSD)对认知功能的影响。本研究旨在确定PCSD对神经认知功能的影响,并探讨与较差的神经认知功能相关的危险因素。本研究是一项在中国进行的基于网络评估的横断面研究,通过改良版在线综合认知评估(ICA)和数字排序测试(NOT)对神经认知功能进行评估。我们使用倾向性评分匹配(PSM)的方法平衡PCSD组及非PCSD组受试者之间的混杂因素,使用单因素分析评估PCSD对神经认知功能的影响,并使用二元logistic回归探索与较差的神经认知表现相关的危险因素。本研究共纳入8692名COVID-19幸存者,其中48.80%的COVID-19幸存者报告有睡眠紊乱。PSM后匹配了3977对(总共7954名受试者)。单因素分析显示PCSD与更差的ICA和NOT表现相关(P<0.05)。研究结果表明,基础疾病、上呼吸道感染、嗅觉或味觉丧失、严重肺炎和自我报告的认知障碍与PCSD受试者的神经认知功能的恶化相关(P<0.05);此外,年龄、少数民族和较低的教育水平是PCSD受试者中较差的神经认知表现的独立风险因素(P<0.05)。总之,PCSD与较差的神经认知功能表现相关,我们应该采取适当的预防和干预措施来减少或预防PCSD对神经认知功能产生的潜在不良影响。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AlperinN, WiltshireJ, LeeSH, et al., 2019. Effect of sleep quality on amnestic mild cognitive impairment vulnerable brain regions in cognitively normal elderly individuals. Sleep, 42(3):zsy254. ![]() [2]AmdalCD, PeM, FalkRS, et al., 2021. Health-related quality of life issues, including symptoms, in patients with active COVID-19 or post COVID-19; a systematic literature review. Qual Life Res, 30(12):3367-3381. ![]() [3]BeckerJH, VannorsdallTD, WeisenbachSL, 2023. Evaluation of post-COVID-19 cognitive dysfunction: recommendations for researchers. JAMA Psychiatry, 80(11):1085-1086. ![]() [4]BowieCR, HarveyPD, 2006. Administration and interpretation of the Trail Making Test. Nat Protoc, 1(5):2277-2281. ![]() [5]BryantAN, FordKL, KimG, 2014. Racial/ethnic variations in the relation between body mass index and cognitive function among older adults. Am J Geriatr Psychiatry, 22(7):653-660. ![]() [6]CaroneDA, Ben-PorathYS, 2014. Dementia does not preclude very reliable responding on the MMPI-2 RF: a case report. Clin Neuropsychol, 28(6):1019-1029. ![]() [7]CebanF, LingSS, LuiLMW, et al., 2022. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: a systematic review and meta-analysis. Brain Behav Immun, 101:93-135. ![]() [8]ChenS, WangSH, BaiYY, et al., 2022. Comparative study on topological properties of the whole-brain functional connectome in idiopathic rapid eye movement sleep behavior disorder and Parkinson’s disease without RBD. Front Aging Neurosci, 14:820479. ![]() [9]ChenXL, WangR, ZeeP, et al., 2015. Racial/ethnic differences in sleep disturbances: the Multi-Ethnic Study of Atherosclerosis (MESA). Sleep, 38(6):877-888. ![]() [10]Corsi-CabreraM, SánchezAI, Del-Río-PortillaY, et al., 2003. Effect of 38 h of total sleep deprivation on the waking EEG in women: sex differences. Int J Psychophysiol, 50(3):213-224. ![]() [11]CrivelliL, PalmerK, CalandriI, et al., 2022. Changes in cognitive functioning after COVID-19: a systematic review and meta-analysis. Alzheimers Dement, 18(5):1047-1066. ![]() [12]DavisHE, AssafGS, McCorkellL, et al., 2021. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. eClinicalMedicine, 38:101019. ![]() [13]Díez-CirardaM, YusM, Gómez-RuizN, et al., 2023. Multimodal neuroimaging in post-COVID syndrome and correlation with cognition. Brain, 146(5):2142-2152. ![]() [14]DuindamHB, KesselsRPC, van den BorstB, et al., 2022. Long-term cognitive performance and its relation to anti-inflammatory therapy in a cohort of survivors of severe COVID-19. Brain Behav Immun Health, 25:100513. ![]() [15]DuivonM, GiffardB, DesgrangesB, et al., 2022. Are sleep complaints related to cognitive functioning in non-central nervous system cancer? A systematic review. Neuropsychol Rev, 32(3):483-505. ![]() [16]DzierzewskiJM, 2022. Insomnia and subjective cognitive decline in older adults: avenues for continued investigation and potential intervention. Sleep, 45(11):zsac216. ![]() [17]Fortier-BrochuÉ, MorinCM, 2014. Cognitive impairment in individuals with insomnia: clinical significance and correlates. Sleep, 37(11):1787-1798. ![]() [18]GongL, ShiM, WangJ, et al., 2021. The abnormal functional connectivity in the locus coeruleus-norepinephrine system associated with anxiety symptom in chronic insomnia disorder. Front Neurosci, 15:678465. ![]() [19]IqbalFM, LamK, SounderajahV, et al., 2021. Characteristics and predictors of acute and chronic post-COVID syndrome: a systematic review and meta-analysis. eClinicalMedicine, 36:100899. ![]() [20]IrwinMR, VitielloMV, 2019. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol, 18(3):296-306. ![]() [21]JahramiHA, AlhajOA, HumoodAM, et al., 2022. Sleep disturbances during the COVID-19 pandemic: a systematic review, meta-analysis, and meta-regression. Sleep Med Rev, 62:101591. ![]() [22]JangY, HaleyWE, ChoiEY, et al., 2022. Racial/ethnic differences in correspondence between subjective cognitive ratings and cognitive impairment. Am J Geriatr Psychiatry, 30(5):627-635. ![]() [23]JeeHJ, ShinW, JungHJ, et al., 2020. Impact of sleep disorder as a risk factor for dementia in men and women. Biomol Ther (Seoul), 28(1):58-73. ![]() [24]KalafatisC, ModarresMH, ApostolouP, et al., 2021. Validity and cultural generalisability of a 5-minute AI-based, computerised cognitive assessment in mild cognitive impairment and Alzheimer’s dementia. Front Psychiatry, 12:706695. ![]() [25]Khaligh-RazaviSM, HabibiS, SadeghiM, et al., 2019. Integrated cognitive assessment: speed and accuracy of visual processing as a reliable proxy to cognitive performance. Sci Rep, 9:1102. ![]() [26]LinhTTD, HoDKN, NguyenNN, et al., 2023. Global prevalence of post-COVID-19 sleep disturbances in adults at different follow-up time points: a systematic review and meta-analysis. Sleep Med Rev, 71:101833. ![]() [27]LiuYH, ChenY, WangQH, et al., 2022. One-year trajectory of cognitive changes in older survivors of COVID-19 in Wuhan, China. JAMA Neurol, 79(5):509-517. ![]() [28]MalikP, PatelK, PintoC, et al., 2022. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)—a systematic review and meta-analysis. J Med Virol, 94(1):253-262. ![]() [29]MuccioliL, PensatoU, CaniI, et al., 2020. COVID-19-associated encephalopathy and cytokine-mediated neuroinflammation. Ann Neurol, 88(4):860-861. ![]() [30]OliverSF, LazoffSA, PopovichJ, et al., 2023. Chronic neurocognitive, neuropsychological, and pulmonary symptoms in outpatient and inpatient cohorts after COVID-19 infection. Neurosci Insights, 18:26331055231186998. ![]() [31]PearsonO, Uglik-MaruchaN, MiskowiakKW, et al., 2023. The relationship between sleep disturbance and cognitive impairment in mood disorders: a systematic review. J Affect Disord, 327:207-216. ![]() [32]SalfiF, AmicucciG, CoriglianoD, et al., 2023. Poor sleep quality, insomnia, and short sleep duration before infection predict long-term symptoms after COVID-19. Brain Behav Immun, 112:140-151. ![]() [33]SanthiN, LazarAS, McCabePJ, et al., 2016. Sex differences in the circadian regulation of sleep and waking cognition in humans. Proc Natl Acad Sci USA, 113(19):E2730-E2739. ![]() [34]ShoreJ, KalafatisC, StainthorpeA, et al., 2023. Health economic analysis of the integrated cognitive assessment tool to aid dementia diagnosis in the United Kingdom. Front Public Health, 11:1240901. ![]() [35]SolomonIH, NormandinE, BhattacharyyaS, et al., 2020. Neuropathological features of Covid-19. N Engl J Med, 383(10):989-992. ![]() [36]TedjasukmanaR, BudikayantiA, IslamiyahWR, et al., 2023. Sleep disturbance in post COVID-19 conditions: prevalence and quality of life. Front Neurol, 13:1095606. ![]() [37]TranahGJ, BlackwellT, StoneKL, et al., 2011. Circadian activity rhythms and risk of incident dementia and mild cognitive impairment in older women. Ann Neurol, 70(5):722-732. ![]() [38]UnsalP, AycicekGS, DenizO, et al., 2021. Insomnia and falls in older adults: are they linked to executive dysfunction? Psychogeriatrics, 21(3):359-367. ![]() [39]ValdesE, FuchsB, MorrisonC, et al., 2022. Demographic and social determinants of cognitive dysfunction following hospitalization for COVID-19. J Neurol Sci, 438:120146. ![]() [40]WerheidK, HoppeC, ThöneA, et al., 2002. The Adaptive Digit Ordering Test: clinical application, reliability, and validity of a verbal working memory test. Arch Clin Neuropsychol, 17(6):547-565. ![]() [41]World Health Organization, 2023. WHO COVID-19 dashboard. https://covid19.who.int ![]() [42]ZaheedAB, ChervinRD, SpiraAP, et al., 2023. Mental and physical health pathways linking insomnia symptoms to cognitive performance 14 years later. Sleep, 46(3):zsac262. ![]() [43]Zhang, QL, WuYL, HanTK, et al., 2019. Changes in cognitive function and risk factors for cognitive impairment of the elderly in China: 2005‒2014. Int J Environ Res Public Health, 16(16):2847. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>