CLC number:
On-line Access: 2024-12-30
Received: 2023-12-11
Revision Accepted: 2024-03-26
Crosschecked: 2024-12-30
Cited: 0
Clicked: 1268
Citations: Bibtex RefMan EndNote GB/T7714
Yuewen JIANG, Qihua PAN, Zhi WANG, Ke LU, Bilin XIA, Tiansheng CHEN. Efficient genome editing in medaka (Oryzias latipes) using a codon-optimized SaCas9 system[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2300899 @article{title="Efficient genome editing in medaka (Oryzias latipes) using a codon-optimized SaCas9 system", %0 Journal Article TY - JOUR
基于密码子优化的SaCas9系统高效编辑青鳉(Oryzias latipes)基因组1华中农业大学水产学院, 农业农村部淡水动物育种重点实验室, 中国武汉市, 430070 2集美大学水产学院,海水养殖育种国家重点实验室, 教育部现代鳗业技术工程研究中心, 农业农村部东海健康海水养殖重点实验室, 中国厦门市, 361021 摘要:CRISPR-Cas9系统属于II型CRISPR/Cas系统,作为一种有效的基因编辑工具被广泛应用于不同生物体中,但化脓性链球菌(Streptococcus pyogenes)Cas9(SpCas9)体积较大(4.3 kb),因此使用载体传递较为不便。本研究利用密码子优化后的金黄色葡萄球菌(Staphylococcus aureus)Cas9(SaCas9)系统进行了青鳉(Oryzias latipes)的tyr、oca2和pax6.1基因编辑。SaCas9片段(3.3 kb)要小,所需的原型间隔相邻基序(PAM)序列为5'-NNGRRT-3'。此外,本研究还利用tRNA-sgRNA系统在体内和体外转录表达功能性sgRNA,经SaCas9和tRNA-sgRNA的组合编辑青鳉基因组中的tyr基因。实验结果表明,SaCas9/sgRNA和SaCas9/tRNA-sgRNA系统均能有效编辑青鳉基因组,而PAM序列是该系统进行有效编辑的关键部分。此外,tRNA还能使sgRNA受巨细胞病毒等常见启动子的控制,从而提高系统的适应性。本研究还发现,CMV-SaCas9-tRNA-sgRNA-tRNA一体化结构在青鳉基因编辑中同样能发挥作用。综上,经密码子优化的SaCas9系统为编辑青鳉及潜在的其他鱼类基因组提供了一种更便捷的工具。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]BalboaD, WeltnerJ, NovikY, et al., 2017. Generation of a SOX2 reporter human induced pluripotent stem cell line using CRISPR/SaCas9. Stem Cell Res, 22:16-19. ![]() [2]BrooksAK, GajT, 2018. Innovations in CRISPR technology. Curr Opin Biotechnol, 52:95-101. ![]() [3]ChenTS, CavariB, SchartlM, et al., 2017. Identification and expression of conserved and novel RNA variants of medaka pax6b gene. J Exp Zool Part B Mol Dev Evol, 328(5):412-422. ![]() [4]DickinsonDJ, WardJD, ReinerDJ, et al., 2013. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods, 10(10):1028-1034. ![]() [5]DongFP, XieKB, ChenYY, et al., 2017. Polycistronic tRNA and CRISPR guide-RNA enables highly efficient multiplexed genome engineering in human cells. Biochem Biophys Res Commun, 482(4):889-895. ![]() [6]FangJ, ChenTS, PanQH, et al., 2018. Generation of albino medaka (Oryzias latipes) by CRISPR/Cas9. J Exp Zool Part B Mol Dev Evol, 330(4):242-246. ![]() [7]FengY, ChenC, HanYX, et al., 2016. Expanding CRISPR/Cas9 genome editing capacity in zebrafish using SaCas9. G3 Genes Genom Genet, 6(8):2517-2521. ![]() [8]FriedlandAE, BaralR, SinghalP, et al., 2015. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol, 16:257. ![]() [9]GratzSJ, CummingsAM, NguyenJN, et al., 2013. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics, 194(4):1029-1035. ![]() [10]HuZY, WangS, ZhangCD, et al., 2020. A compact Cas9 ortholog from Staphylococcus auricularis (SauriCas9) expands the DNA targeting scope. PLoS Biol, 18(3):e3000686. ![]() [11]HwangWY, FuYF, ReyonD, et al., 2013. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol, 31(3):227-229. ![]() [12]JinekM, ChylinskiK, FonfaraI, et al., 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096):816-821. ![]() [13]KatayamaS, SatoK, NakazawaT, 2019. In vivo and in vitro knockout system labelled using fluorescent protein via microhomology-mediated end joining. Life Sci Alliance, 3(1):e201900528. ![]() [14]KleinstiverBP, PrewMS, TsaiSQ, et al., 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 523(7561):481-485. ![]() [15]LiH, ShengCY, LiuHB, et al., 2018. Inhibition of HBV expression in HBV transgenic mice using AAV-delivered CRISPR-SaCas9. Front Immunol, 9:2080. ![]() [16]MaCF, ZhuCZ, ZhengM, et al., 2019. CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Hortic Res, 6:20. ![]() [17]MakarovaKS, HaftDH, BarrangouR, et al., 2011a. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 9(6):467-477. ![]() [18]MakarovaKS, AravindL, WolfYI, et al., 2011b. Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct, 6:38. ![]() [19]MakarovaKS, WolfYI, AlkhnbashiOS, et al., 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol, 13(11):722-736. ![]() [20]MefferdAL, KornepatiAVR, BogerdHP, et al., 2015. Expression of CRISPR/Cas single guide RNAs using small tRNA promoters. RNA, 21(9):1683-1689. ![]() [21]MojicaFJM, Díez-VillaseñorC, García-MartínezJ, et al., 2009. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 155(3):733-740. ![]() [22]NakaarV, DareAO, HongD, et al., 1994. Upstream tRNA genes are essential for expression of small nuclear and cytoplasmic RNA genes in trypanosomes. Mol Cell Biol, 14(10):6736-6742. ![]() [23]NumamotoM, MaekawaH, KanekoY, 2017. Efficient genome editing by CRISPR/Cas9 with a tRNA-sgRNA fusion in the methylotrophic yeast Ogataea polymorpha. J Biosci Bioeng, 124(5):487-492. ![]() [24]PanQH, LuoJZ, JiangYW, et al., 2022. Efficient gene editing in a medaka (Oryzias latipes) cell line and embryos by SpCas9/tRNA-gRNA. J Zhejiang Univ-Sci B (Biomed & Biotechnol), 23(1):74-83. ![]() [25]PanQH, LuK, LuoJZ, et al., 2023a. Japanese medaka Olpax6.1 mutant as a potential model for spondylo-ocular syndrome. Funct Integr Genomics, 23(2):168. ![]() [26]PanQH, LuoJZ, JiangYW, et al., 2023b. Medaka (Oryzias latipes) Olpax6.2 acquires maternal inheritance and germ cells expression, but functionally degenerate in the eye. Gene, 872:147439. ![]() [27]PortF, BullockSL, 2016. Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNA. Nat Methods, 13:852-854. ![]() [28]QiWW, ZhuT, TianZR, et al., 2016. High-efficiency CRISPR/Cas9 multiplex gene editing using the glycine tRNA-processing system-based strategy in maize. BMC Biotechnol, 16:58. ![]() [29]RanFA, CongL, YanWX, et al., 2015. In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520(7546):186-191. ![]() [30]ShirakiT, KawakamiK, 2018. A tRNA-based multiplex sgRNA expression system in zebrafish and its application to generation of transgenic albino fish. Sci Rep, 8:13366. ![]() [31]SwiechL, HeidenreichM, BanerjeeA, et al., 2015. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol, 33(1):102-106. ![]() [32]WangLL, YangY, BretonC, et al., 2020. A mutation-independent CRISPR-Cas9-mediated gene targeting approach to treat a murine model of ornithine transcarbamylase deficiency. Sci Adv, 6(7):eaax5701. ![]() [33]WangQK, LiuS, LiuZP, et al., 2018. Genome scale screening identification of SaCas9/gRNAs for targeting HIV-1 provirus and suppression of HIV-1 infection. Virus Res, 250:21-30. ![]() [34]WiedenheftB, SternbergSH, DoudnaJA, 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature, 482(7385):331-338. ![]() [35]WuH, LiuQS, ShiH, et al., 2018. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems. Cell Mol Life Sci, 75(19):3593-3607. ![]() [36]XieHH, TangLC, HeXB, et al., 2018. SaCas9 requires 5'-NNGRRT-3' PAM for sufficient cleavage and possesses higher cleavage activity than SpCas9 or FnCpf1 in human cells. Biotechnol J, 13(3):1800080. ![]() [37]XieKB, MinkenbergB, YangYN, 2015. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA, 112(11):3570-3575. ![]() [38]YangZX, FuYW, ZhaoJJ, et al., 2022. Superior fidelity and distinct editing outcomes of SaCas9 compared to SpCas9 in genome editing. Genom Proteom Bioinf, 21(6):1206-1220. ![]() [39]ZhangXY, LiangPP, DingCH, et al., 2016. Efficient production of gene-modified mice using Staphylococcus aureus Cas9. Sci Rep, 6:32565. ![]() [40]ZhangYP, WangJ, WangZB, et al., 2019. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae. Nat Commun, 10:1053. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>