
CLC number:
On-line Access: 2026-02-06
Received: 2024-05-20
Revision Accepted: 2024-10-07
Crosschecked: 2026-02-06
Cited: 0
Clicked: 1878
Citations: Bibtex RefMan EndNote GB/T7714
Muhammad TUFAIL, Caiyun HE, Canhua JIANG, Ning LI. Roles of Wnt ligands and receptors in oral squamous cell carcinoma[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2400251 @article{title="Roles of Wnt ligands and receptors in oral squamous cell carcinoma", %0 Journal Article TY - JOUR
Wnt配体和受体在口腔鳞状细胞癌中的作用1中南大学湘雅医院口腔颌面外科, 口腔医学中心, 中国长沙市, 410008 2中南大学口腔癌前病变研究所, 中国长沙市, 410008 3中南大学湘雅医院口腔与颌面肿瘤研究中心, 中国长沙市, 410008 4中南大学湘雅医院老年病国家临床研究中心, 中国长沙市, 410008 摘要:口腔鳞状细胞癌(OSCC)具有较高发病率和死亡率,在临床诊断和治疗中面临重大挑战。最新研究证实Wnt配体及其受体在OSCC发病中具有关键作用。Wnt信号通路失调可通过促进细胞增殖和上皮-间质转化(EMT),以及维持癌症干细胞(CSC)干性,来驱动肿瘤的发生与发展,并导致其产生治疗抵抗。尽管靶向Wnt信号通路展现出潜在的治疗前景,但要实现有效干预,仍需对Wnt与其他信号通路的复杂相互作用展开进一步研究。本文对Wnt配体和受体在OSCC中作用的最新研究进行综述,强调其作为诊断生物标志物和治疗靶点的潜力。未来的研究方向包括阐明Wnt信号通路在特定背景下的动态变化,并探索联合疗法以提高OSCC患者的临床治疗效果。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AiYL, WuSY, ZouC, et al., 2020. LINC00941 promotes oral squamous cell carcinoma progression via activating CAPRIN2 and canonical WNT/β-catenin signaling pathway. J Cell Mol Med, 24(18):10512-10524. ![]() [2]ArebroJ, TowleR, LeeCM, et al., 2023. Extracellular vesicles promote activation of pro-inflammatory cancer-associated fibroblasts in oral cancer. Front Cell Dev Biol, 11:1240159. ![]() [3]BaiYP, ShaJJ, KannoT, 2020. The role of carcinogenesis-related biomarkers in the Wnt pathway and their effects on epithelial‒mesenchymal transition (EMT) in oral squamous cell carcinoma. Cancers, 12(3):555. ![]() [4]BaisMV, KukuruzinskaM, TrackmanPC, 2015. Orthotopic non-metastatic and metastatic oral cancer mouse models. Oral Oncol, 51(5):476-482. ![]() [5]BuenoMLP, SaadSTO, RoversiFM, 2022. WNT5A in tumor development and progression: a comprehensive review. Biomed Pharmacother, 155:113599. ![]() [6]CadenaIA, BuchananMR, HarrisCG, et al., 2023. Engineering high throughput screening platforms of cervical cancer. J Biomed Mater Res, 111(6):747-764. ![]() [7]CadiganKM, WatermanML, 2012. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol, 4(11):a007906. ![]() [8]ChandlerKB, AlamoudKA, StahlVL, et al., 2020. β-Catenin/CBP inhibition alters epidermal growth factor receptor fucosylation status in oral squamous cell carcinoma. Mol Omics, 16(3):195-209. ![]() [9]ChavesP, GarridoM, OliverJ, et al., 2023. Preclinical models in head and neck squamous cell carcinoma. Br J Cancer, 128(10):1819-1827. ![]() [10]ChenC, LuoLN, XuCL, et al., 2022. Tumor specificity of WNT ligands and receptors reveals universal squamous cell carcinoma oncogenes. BMC Cancer, 22:790. ![]() [11]CierpikowskiP, Lis-NawaraA, BarJ, 2023. Prognostic value of WNT1, NOTCH1, PDGFRβ, and CXCR4 in oral squamous cell carcinoma. Anticancer Res, 43(2):591-602. ![]() [12]Dalir AbdolahiniaE, HanXZ, 2023. The three-dimensional in vitro cell culture models in the study of oral cancer immune microenvironment. Cancers, 15(17):4266. ![]() [13]DongY, ZhaoQ, MaXY, et al., 2015. Establishment of a new OSCC cell line derived from OLK and identification of malignant transformation-related proteins by differential proteomics approach. Sci Rep, 5:12668. ![]() [14]FarrapoMT, RifaneTO, PintoDN, et al., 2022. Canonical WNT signaling pathway in oral squamous cell carcinoma prognosis. Res Soc Dev, 11(2):e8411225462. ![]() [15]FarshbafA, LotfiM, ZareR, et al., 2023. The organoid as reliable cancer modeling in personalized medicine, does applicable in precision medicine of head and neck squamous cell carcinoma? Pharmacogenomics J, 23(2-3):37-44. ![]() [16]Fleming-de-MoraesCD, RochaMR, TessmannJW, et al., 2022. Crosstalk between PI3K/Akt and Wnt/β-catenin pathways promote colorectal cancer progression regardless of mutational status. Cancer Biol Ther, 23(1):1-13. ![]() [17]GeC, HuangXT, ZhangSJ, et al., 2023. In vitro co-culture systems of hepatic and intestinal cells for cellular pharmacokinetic and pharmacodynamic studies of capecitabine against colorectal cancer. Cancer Cell Int, 23:14. ![]() [18]GrimaldiM, BoulahtoufA, PrévostelC, et al., 2018. A cell model suitable for a high-throughput screening of inhibitors of the Wnt/β-catenin pathway. Front Pharmacol, 9:1160. ![]() [19]HeK, GanWJ, 2023. Wnt/β-catenin signaling pathway in the development and progression of colorectal cancer. Cancer Manag Res, 15:435-448. ![]() [20]HouZY, WuCZ, TangJR, et al., 2024. CLSPN actives Wnt/β-catenin signaling to facilitate glycolysis and cell proliferation in oral squamous cell carcinoma. Exp Cell Res, 435(2):113935. ![]() [21]HsuTN, HuangCM, HuangCS, et al., 2019. Targeting FAT1 inhibits carcinogenesis, induces oxidative stress and enhances cisplatin sensitivity through deregulation of LRP5/WNT2/GSS signaling axis in oral squamous cell carcinoma. Cancers, 11(12):1883. ![]() [22]HsuehPC, ChangKP, LiuHP, et al., 2022. Development of a salivary autoantibody biomarker panel for diagnosis of oral cavity squamous cell carcinoma. Front Oncol, 12:968570. ![]() [23]InvreaF, RovitoR, TorchiaroE, et al., 2020. Patient-derived xenografts (PDXs) as model systems for human cancer. Curr Opin Biotechnol, 63:151-156. ![]() [24]JiaB, QiuXL, ChuHX, et al., 2019. Wnt7a predicts poor prognosis, and contributes to growth and metastasis in tongue squamous cell carcinoma. Oncol Rep, 41(3):1749-1758. ![]() [25]JoinerDM, KeJY, ZhongZD, et al., 2013. LRP5 and LRP6 in development and disease. Trends Endocrinol Metab, 24(1):31-39. ![]() [26]JungEK, KimSA, YoonTM, et al., 2017. WNT1-inducible signaling pathway protein-1 contributes to tumor progression and treatment failure in oral squamous cell carcinoma. Oncol Lett, 14(2):1719-1724. ![]() [27]KalinkeLP, AlvaresLE, SchusselJL, et al., 2016. Expression of WNT10A gene in oral squamous cell carcinoma. West Indian Med J, 65(3):480-485. ![]() [28]KarthaVK, AlamoudKA, SadykovK, et al., 2018. Functional and genomic analyses reveal therapeutic potential of targeting β-catenin/CBP activity in head and neck cancer. Genome Med, 10:54. ![]() [29]KayamoriK, KatsubeKI, HiraiH, et al., 2023. Role of stromal fibroblast-induced WNT7A associated with cancer cell migration through the AKT/CLDN1 signaling axis in oral squamous cell carcinoma. Lab Invest, 103(10):100228. ![]() [30]KimO, AhnK, KimHE, et al., 2019. Screening of β-catenin inhibitor from medicinal plant extracts for intractable recurrent oral cancer. Oral Surg Oral Med Oral Pathol Oral Radiol, 128(1):e43. ![]() [31]KrisanaprakornkitS, IamaroonA, 2012. Epithelial-mesenchymal transition in oral squamous cell carcinoma. Int Scholarly Res Not, 2012:681469. ![]() [32]KumarV, VashishtaM, KongL, et al., 2021. The role of notch, hedgehog, and Wnt signaling pathways in the resistance of tumors to anticancer therapies. Front Cell Dev Biol, 9:650772. ![]() [33]LauHK, WuER, ChenMK, et al., 2017. Effect of genetic variation in microRNA binding site in WNT1-inducible signaling pathway protein 1 gene on oral squamous cell carcinoma susceptibility. PLoS ONE, 12(4):e0176246. ![]() [34]LeeG, KimYB, KimJH, et al., 2002. Characterization of novel cell lines established from three human oral squamous cell carcinomas. Int J Oncol, 20(6):1151-1159. ![]() [35]LeeSY, KooIS, HwangHJ, et al., 2023. In vitro three-dimensional (3D) cell culture tools for spheroid and organoid models. SLAS Discov, 28(4):119-137. ![]() [36]LiQ, DongH, YangGW, et al., 2020. Mouse tumor-bearing models as preclinical study platforms for oral squamous cell carcinoma. Front Oncol, 10:212. ![]() [37]LiuBY, ChenW, CaoG, et al., 2017. MicroRNA-27b inhibits cell proliferation in oral squamous cell carcinoma by targeting FZD7 and Wnt signaling pathway. Arch Oral Biol, 83:92-96. ![]() [38]LiuBY, CaoG, DongZ, et al., 2019. Effect of microRNA-27b on cisplatin chemotherapy sensitivity of oral squamous cell carcinoma via FZD7 signaling pathway. Oncol Lett, 18(1):667-673. ![]() [39]LiuJ, PanSF, HsiehMH, et al., 2013. Targeting Wnt-driven cancer through the inhibition of Porcupine by LGK974. Proc Natl Acad Sci USA, 110(50):20224-20229. ![]() [40]LiuLJ, JiangH, ZhaoJ, et al., 2018. MiRNA-16 inhibited oral squamous carcinoma tumor growth in vitro and in vivo via suppressing Wnt/β-catenin signaling pathway. Onco Targets Ther, 11:5111-5119. ![]() [41]LiuYH, WuWT, CaiCJ, et al., 2023. Patient-derived xenograft models in cancer therapy: technologies and applications. Signal Transduct Target Ther, 8:160. ![]() [42]MaJT, RenYP, ZhangL, et al., 2017. Knocking-down of CREPT prohibits the progression of oral squamous cell carcinoma and suppresses cyclin D1 and c-Myc expression. PLoS ONE, 12(4):e0174309. ![]() [43]MehterovN, VladimirovB, SacconiA, et al., 2021. Salivary miR-30c-5p as potential biomarker for detection of oral squamous cell carcinoma. Biomedicines, 9(9):1079. ![]() [44]MengX, LouQY, YangWY, et al., 2021. The role of non-coding RNAs in drug resistance of oral squamous cell carcinoma and therapeutic potential. Cancer Commun (Lond), 41(10):981-1006. ![]() [45]MenonR, LiCC, LiMZ, 2017. Wnt signaling in oral cancer initiating cells. Oral Surg Oral Med Oral Pathol Oral Radiol, 124(3):e202. ![]() [46]MillenR, de KortWWB, KoomenM, et al., 2023. Patient-derived head and neck cancer organoids allow treatment stratification and serve as a tool for biomarker validation and identification. Med, 4(5):290-310.e12. ![]() [47]MinAJ, ZhuC, PengSP, et al., 2016. Downregulation of microRNA-148a in cancer-associated fibroblasts from oral cancer promotes cancer cell migration and invasion by targeting Wnt10b. J Biochem Mol Toxicol, 30(4):186-191. ![]() [48]NgernsombatC, PrattapongP, LarbcharoensubN, et al., 2021. WNT8B as an independent prognostic marker for nasopharyngeal carcinoma. Curr Oncol, 28(4):2529-2539. ![]() [49]NguyenNT, DoanVN, TranHLB, 2023. Role of co-culture with fibroblasts and dynamic culture systems in 3-dimensional MCF-7 tumor model maturation. Trends Sci, 20(2):3892-3892. ![]() [50]NieXB, LiuHY, LiuL, et al., 2020. Emerging roles of Wnt ligands in human colorectal cancer. Front Oncol, 10:1341. ![]() [51]NogutiJ, de MouraCFG, HossakaTA, et al., 2012. The role of canonical WNT signaling pathway in oral carcinogenesis: a comprehensive review. Anticancer Res, 32(3):873-878. ![]() [52]PaluszczakJ, 2020. The significance of the dysregulation of canonical Wnt signaling in head and neck squamous cell carcinomas. Cells, 9(3):723. ![]() [53]PatelS, AlamA, PantR, et al., 2019. Wnt signaling and its significance within the tumor microenvironment: novel therapeutic insights. Front Immunol, 10:2872. ![]() [54]PatilDJ, NagarajuR, 2021. Personalised precision medicine - a novel approach for oral cancer management. In: Sridharan G (Ed.), Oral Cancer—Current Concepts and Future Perspectives. IntechOpen, Rijeka. ![]() [55]PekarekL, Garrido-GilMJ, Sánchez-CendraA, et al., 2023. Emerging histological and serological biomarkers in oral squamous cell carcinoma: applications in diagnosis, prognosis evaluation and personalized therapeutics (Review). Oncol Rep, 50(6):213. ![]() [56]Peña-OyarzúnD, FloresT, TorresVA, et al., 2024. Inhibition of PORCN blocks Wnt signaling to attenuate progression of oral carcinogenesis. Clin Cancer Res, 30(1):209-223. ![]() [57]PrgometZ, LindbergP, AnderssonT, 2013. PP064: Wnt5a stimulates migration and invasion in OSCC. Oral Oncol, 49(suppl 1):S115-S116. ![]() [58]PrgometZ, AnderssonT, LindbergP, 2017. Higher expression of WNT5A protein in oral squamous cell carcinoma compared with dysplasia and oral mucosa with a normal appearance. Eur J Oral Sci, 125(4):237-246. ![]() [59]ProssomaritiA, PiazziG, AlquatiC, et al., 2020. Are Wnt/β-catenin and PI3K/AKT/mTORC1 distinct pathways in colorectal cancer? Cell Mol Gastroenterol Hepatol, 10(3):491-506. ![]() [60]PurwaningsihNMS, KhorGH, Nik Mohd RosdyNMM, et al., 2021. Wnt pathway in oral cancer: a review update. Saudi Dent J, 33(8):813-818. ![]() [61]RenQ, ChenJC, LiuYH, 2021. LRP5 and LRP6 in Wnt signaling: similarity and divergence. Front Cell Dev Biol, 9:670960. ![]() [62]ReyesM, FloresT, BetancurD, et al., 2020. Wnt/β-catenin signaling in oral carcinogenesis. Int J Mol Sci, 21(13):4682. ![]() [63]RobertBM, DakshinamoorthyM, Ganapathyagraharam RamamoorthyB, et al., 2018. Predicting tumor sensitivity to chemotherapeutic drugs in oral squamous cell carcinoma patients. Sci Rep, 8:15545. ![]() [64]RoslanZ, MuhamadM, SelvaratnamL, et al., 2019. The roles of low-density lipoprotein receptor-related proteins 5, 6, and 8 in cancer: a review. J Oncol, 2019:4536302. ![]() [65]SaP, SinghP, PandaS, et al., 2024. Reversal of cisplatin resistance in oral squamous cell carcinoma by piperlongumine loaded smart nanoparticles through inhibition of Hippo-YAP signaling pathway. Transl Res, 268:63-78. ![]() [66]SajeevA, BharathwajChettyB, VishwaR, et al., 2023. Crosstalk between non-coding RNAs and Wnt/β-catenin signaling in head and neck cancer: identification of novel biomarkers and therapeutic agents. Non-coding RNA, 9(5):63. ![]() [67]SakamotoT, KawanoS, MatsubaraR, et al., 2017. Critical roles of Wnt5a‒Ror2 signaling in aggressiveness of tongue squamous cell carcinoma and production of matrix metalloproteinase-2 via ΔNp63β-mediated epithelial-mesenchymal transition. Oral Oncol, 69:15-25. ![]() [68]ShenYH, ChenYL, LinYT, et al., 2023. CDK5RAP2 is a Wnt target gene and promotes stemness and progression of oral squamous cell carcinoma. Cell Death Dis, 14(2):107. ![]() [69]ShiahSG, ShiehYS, ChangJY, 2015. The role of Wnt signaling in squamous cell carcinoma. J Dent Res, 95(2):129-134. ![]() [70]SilvaJPN, PintoB, MonteiroL, et al., 2023. Combination therapy as a promising way to fight oral cancer. Pharmaceutics, 15(6):1653. ![]() [71]SilveiraFM, SchmidtTR, NeumannB, et al., 2023. Impact of photobiomodulation in a patient-derived xenograft model of oral squamous cell carcinoma. Oral Dis, 29(2):547-556. ![]() [72]SmithAJ, SompelKM, ElangoA, et al., 2021. Non-coding RNA and frizzled receptors in cancer. Front Mol Biosci, 8:712546. ![]() [73]SompelK, ElangoA, SmithAJ, et al., 2021. Cancer chemoprevention through Frizzled receptors and EMT. Discov Oncol, 12:32. ![]() [74]SrivastavaG, MattaA, FuGD, et al., 2015. Anticancer activity of pyrithione zinc in oral cancer cells identified in small molecule screens and xenograft model: implications for oral cancer therapy. Mol Oncol, 9(8):1720-1735. ![]() [75]SunLL, KangXD, WangC, et al., 2023. Single-cell and spatial dissection of precancerous lesions underlying the initiation process of oral squamous cell carcinoma. Cell Discov, 9:28. ![]() [76]TakabatakeK, KawaiH, OmoriH, et al., 2020. Impact of the stroma on the biological characteristics of the parenchyma in oral squamous cell carcinoma. Int J Mol Sci, 21(20):7714. ![]() [77]TakeshitaA, IwaiS, MoritaY, et al., 2014. Wnt5b promotes the cell motility essential for metastasis of oral squamous cell carcinoma through active Cdc42 and RhoA. Int J Oncol, 44(1):59-68. ![]() [78]TanYH, WangZH, XuMT, et al., 2023. Oral squamous cell carcinomas: state of the field and emerging directions. Int J Oral Sci, 15:44. ![]() [79]TasoulasJ, SrivastavaS, XuXN, et al., 2023. Genetically engineered mouse models of head and neck cancers. Oncogene, 42(35):2593-2609. ![]() [80]TianJG, CuiXG, FengYD, et al., 2018. Inhibition of WNT7A-β-catenin signaling pathway sensitizes oral squamous cell carcinoma to cisplatin. Int J Clin Exp Pathol, 11(10):4926-4933. ![]() [81]UmarSA, DongB, NihalM, et al., 2022. Frizzled receptors in melanomagenesis: from molecular interactions to target identification. Front Oncol, 12:1096134. ![]() [82]UrzìO, GasparroR, CostanzoE, et al., 2023. Three-dimensional cell cultures: the bridge between in vitro and in vivo models. Int J Mol Sci, 24(15):12046. ![]() [83]VahleAK, KeremA, ÖztürkE, et al., 2012. Optimization of an orthotopic murine model of head and neck squamous cell carcinoma in fully immunocompetent mice ‒ role of toll-like-receptor 4 expressed on host cells. Cancer Lett, 317(2):199-206. ![]() [84]VerrelleP, GestraudP, PoyerF, et al., 2024. Integrated high-throughput screening and large-scale isobolographic analysis to accelerate the discovery of radiosensitizers with greater selectivity for cancer cells. Int J Radiat Oncol Biol Phys, 118(5):1294-1307. ![]() [85]VijayakumarG, NarwalA, KambojM, et al., 2020. Association of SOX2, OCT4 and WNT5A expression in oral epithelial dysplasia and oral squamous cell carcinoma: an immunohistochemical study. Head Neck Pathol, 14(3):749-757. ![]() [86]WalrathJC, HawesJJ, van DykeT, et al., 2010. Genetically engineered mouse models in cancer research. Adv Cancer Res, 106:113-164. ![]() [87]WangYF, CaoZ, LiuFJ, et al., 2021. Clinical significance of activated Wnt/β-catenin signaling in apoptosis inhibition of oral cancer. Open Life Sci, 16(1):1045-1052. ![]() [88]WangZM, LuoJQ, XuLY, et al., 2018. Harnessing low-density lipoprotein receptor protein 6 (LRP6) genetic variation and Wnt signaling for innovative diagnostics in complex diseases. Pharmacogenomics J, 18(3):351-358. ![]() [89]WanigasekaraJ, CullenPJ, BourkeP, et al., 2023. Advances in 3D culture systems for therapeutic discovery and development in brain cancer. Drug Discov Today, 28(2):103426. ![]() [90]XieH, MaYD, LiJ, et al., 2020. WNT7A promotes EGF-induced migration of oral squamous cell carcinoma cells by activating β-catenin/MMP9-mediated signaling. Front Pharmacol, 11:98. ![]() [91]XieJ, HuangL, LuYG, et al., 2021. Roles of the Wnt signaling pathway in head and neck squamous cell carcinoma. Front Mol Biosci, 7:590912. ![]() [92]XuF, PengLL, FengJY, et al., 2023. A prediction model of nodal metastasis in cN0 oral squamous cell carcinoma using metabolic and pathological variables. Cancer Imaging, 23:34. ![]() [93]YangWB, ZhangSH, LiTL, et al., 2023. Single-cell analysis reveals that cancer-associated fibroblasts stimulate oral squamous cell carcinoma invasion via the TGF-β/Smad pathway. Acta Biochim Biophys Sin (Shanghai), 55(2):262-273. https://cstr.cn/32197.14.abbs.2022132 ![]() [94]YuFY, YuCH, LiFF, et al., 2021. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther, 6:307. ![]() [95]YuanY, XieXY, JiangYC, et al., 2017. LRP6 is identified as a potential prognostic marker for oral squamous cell carcinoma via MALDI-IMS. Cell Death Dis, 8(9):e3035. ![]() [96]ZanellaER, GrassiE, TrusolinoL, 2022. Towards precision oncology with patient-derived xenografts. Nat Rev Clin Oncol, 19(11):719-732. ![]() [97]ZengCM, ChenZ, FuL, 2018. Frizzled receptors as potential therapeutic targets in human cancers. Int J Mol Sci, 19(5):1543. ![]() [98]ZhangCP, HaoYL, SunYY, et al., 2019. Quercetin suppresses the tumorigenesis of oral squamous cell carcinoma by regulating microRNA-22/WNT1/β-catenin axis. J Pharmacol Sci, 140(2):128-136. ![]() [99]ZhangEJ, LiZN, XuZF, et al., 2015. Frizzled2 mediates the migration and invasion of human oral squamous cell carcinoma cells through the regulation of the signal transducer and activator of transcription-3 signaling pathway. Oncol Rep, 34(6):3061-3067. ![]() [100]ZhangY, LiuSH, QuDW, et al., 2017. Kif4A mediate the accumulation and reeducation of THP-1 derived macrophages via regulation of CCL2-CCR2 expression in crosstalking with OSCC. Sci Rep, 7:2226. ![]() [101]ZhangYH, ZhangYS, NiuWW, et al., 2021. Experimental study of almonertinib crossing the blood-brain barrier in EGFR-mutant NSCLC brain metastasis and spinal cord metastasis models. Front Pharmacol, 12:750031. ![]() [102]ZhangYL, ZuD, ChenZ, et al., 2020. An update on Wnt signaling pathway in cancer. Transl Cancer Res, 9(2):1246-1252. ![]() [103]ZhangYQ, LiuCX, DuanXL, et al., 2014. CREPT/RPRD1B, a recently identified novel protein highly expressed in tumors, enhances the β-catenin·TCF4 transcriptional activity in response to Wnt signaling. J Biol Chem, 289(33):22589-22599. ![]() [104]ZhaoBR, QinX, FuR, et al., 2024. Supramolecular nanodrug targeting CDK4/6 overcomes BAG1 mediated cisplatin resistance in oral squamous cell carcinoma. J Control Release, 368:623-636. ![]() [105]ZhongL, LiuYT, WangK, et al., 2018. Biomarkers: paving stones on the road towards the personalized precision medicine for oral squamous cell carcinoma. BMC Cancer, 18:911. ![]() [106]ZhuEX, LiXM, ZhuL, et al., 2005. Expression of Wnt5a and β-catenin in Chinese oral squamous cell carcinoma of tongue. J Hard Tissue Biol, 14(2):247-248. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||


ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>