
CLC number:
On-line Access: 2025-10-21
Received: 2024-06-25
Revision Accepted: 2024-08-26
Crosschecked: 2025-10-21
Cited: 0
Clicked: 2225
Citations: Bibtex RefMan EndNote GB/T7714
https://ORCID:orcid.org/0009-0005-6119-574X
https://ORCID:orcid.org/0000-0001-8496-0364
https://ORCID:orcid.org/0000-0003-0429-1645
Cunzheng ZHANG, Ruqiao DUAN, Nini DAI, Yuzhu CHEN, Gaonan LI, Xiao'ang LI, Xiaolin JI, Xuemei ZHONG, Zailing LI, Liping DUAN. Pediatric inflammatory bowel disease in mother‒child pairs: clinical risk factors and gut microbiota characteristics[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2400330 @article{title="Pediatric inflammatory bowel disease in mother‒child pairs: clinical risk factors and gut microbiota characteristics", %0 Journal Article TY - JOUR
儿童炎症性肠病的母子对研究:临床危险因素和肠道菌群特征1北京大学第三医院消化科,中国北京市,100191 2幽门螺杆菌感染及上胃肠疾病诊治研究北京市重点实验室,中国北京市,100191 3北京大学第三医院儿科,中国北京市,100191 4首都儿科研究所消化科,中国北京市,100020 摘要:在儿童炎症性肠病(PIBD)发病中,母子肠道菌群的作用及相关风险因素尚未明确。本研究旨在探究PIBD发病的临床危险因素,分析患儿与母亲的肠道菌群特征,并探讨二者肠道菌群的相关性。研究采用病例-对照设计,纳入54对PIBD患儿及其母亲作为病例组,122对健康儿童及其母亲作为对照组。通过问卷收集家族疾病史、围产期及生命早期事件等信息;采集两组儿童及母亲的粪便样本,进行微生物16S rRNA测序,分析肠道菌群组成及其与PIBD发病的潜在关联。结果显示,自身免疫病家族史、孕期抗生素使用与PIBD发病风险升高相关,而父亲学历较高则与PIBD发病风险降低相关。病例组母子的肠道菌群与对照组存在显著差异,且同组内母亲与子女的肠道菌群具有相似性。此外,母亲的肠道菌群生物标志物可预测其子女患PIBD的风险。综上,PIBD的发病受母源性危险因素影响,患者存在独特的肠道菌群特征;母子肠道菌群的密切关联提示二者间存在菌群传递与相互影响。本研究为阐明PIBD的潜在发病机制提供了依据,并为针对性干预措施的开发奠定了基础。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AgrawalM, SabinoJ, Frias-GomesC, et al., 2021. Early life exposures and the risk of inflammatory bowel disease: systematic review and meta-analyses. EClinicalMedicine, 36:100884. ![]() [2]AgrawalM, PoulsenG, ColombelJF, et al., 2023. Maternal antibiotic exposure during pregnancy and risk of IBD in offspring: a population-based cohort study. Gut, 72(4):804-805. ![]() [3]ArumugamM, RaesJ, PelletierE, et al., 2011. Enterotypes of the human gut microbiome. Nature, 473(7346):174-180. ![]() [4]AsnicarF, ManaraS, ZolfoM, et al., 2017. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems, 2(1):e00164-16. ![]() [5]Baltazar-DíazTA, González-HernándezLA, Aldana-LedesmaJM, et al., 2022. Escherichia/Shigella, SCFAs, and metabolic pathways—the triad that orchestrates intestinal dysbiosis in patients with decompensated alcoholic cirrhosis from western Mexico. Microorganisms, 10(6):1231. ![]() [6]Benítez-PáezA, del PugarEMG, López-AlmelaI, et al., 2020. Depletion of Blautia species in the microbiota of obese children relates to intestinal inflammation and metabolic phenotype worsening. mSystems, 5(2):e00857-19. ![]() [7]BokulichNA, SubramanianS, FaithJJ, et al., 2013. Quality-filtering vastly improves diversity estimates from illumina amplicon sequencing. Nat Methods, 10(1):57-59. ![]() [8]BouhuysM, LexmondWS, van RheenenPF, 2023. Pediatric inflammatory bowel disease. Pediatrics, 151(1):e2022058037. ![]() [9]BuchenauerL, HaangeSB, BauerM, et al., 2023. Maternal exposure of mice to glyphosate induces depression- and anxiety-like behavior in the offspring via alterations of the gut‒brain axis. Sci Total Environ, 905:167034. ![]() [10]ChanJL, WuSG, GeisAL, et al., 2019. Non-toxigenic Bacteroides fragilis (NTBF) administration reduces bacteria-driven chronic colitis and tumor development independent of polysaccharide A. Mucosal Immunol, 12(1):164-177. ![]() [11]ChenHY, TongTY, LuSY, et al., 2023. Urea cycle activation triggered by host-microbiota maladaptation driving colorectal tumorigenesis. Cell Metab, 35(4):651-666.E7. ![]() [12]ChenW, WangDS, DengX, et al., 2024. Bile acid profiling as an effective biomarker for staging in pediatric inflammatory bowel disease. Gut Microbes, 16(1):2323231. ![]() [13]D'AdamoGL, ChonwerawongM, GearingLJ, et al., 2023. Bacterial clade-specific analysis identifies distinct epithelial responses in inflammatory bowel disease. Cell Rep Med, 4(7):101124. ![]() [14]DolingerM, TorresJ, VermeireS, 2024. Crohn’s disease. Lancet, 403(10432):1177-1191. ![]() [15]DongDF, SuTX, ChenW, et al., 2023. Clostridioides difficile aggravates dextran sulfate solution (DSS)-induced colitis by shaping the gut microbiota and promoting neutrophil recruitment. Gut Microbes, 15(1):2192478. ![]() [16]DouglasGM, MaffeiVJ, ZaneveldJR, et al., 2020. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol, 38(6):685-688. ![]() [17]DuanRQ, ZhangCZ, LiGN, et al., 2025. Antibiotic exposure and risk of new-onset inflammatory bowel disease: a systematic review and dose-response meta-analysis. Clin Gastroenterol Hepatol, 23(1):45-58.e15. ![]() [18]EdgarRC, HaasBJ, ClementeJC, et al., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27(16):2194-2200. ![]() [19]FerrettiP, PasolliE, TettA, et al., 2018. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe, 24(1):133-145.e5. ![]() [20]HillCA, CasterlineBW, ValguarneraE, et al., 2024. Bacteroides fragilis toxin expression enables lamina propria niche acquisition in the developing mouse gut. Nat Microbiol, 9(1):85-94. ![]() [21]IwamuroM, TanakaT, KagawaS, et al., 2023. Collagenous colitis in a patient with gastric cancer who underwent chemotherapy. Cureus, 15(5):e39466. ![]() [22]JezernikG, Mičetić-TurkD, PotočnikU, 2020. Molecular genetic architecture of monogenic pediatric IBD differs from complex pediatric and adult IBD. J Pers Med, 10(4):243. ![]() [23]KhorsandB, Asadzadeh AghdaeiH, Nazemalhosseini-MojaradE, et al., 2022. Overrepresentation of Enterobacteriaceae and Escherichia coli is the major gut microbiome signature in Crohn’s disease and ulcerative colitis; a comprehensive metagenomic analysis of IBDMDB datasets. Front Cell Infect Microbiol, 12:1015890. ![]() [24]KorenO, KonnikovaL, BrodinP, et al., 2024. The maternal gut microbiome in pregnancy: implications for the developing immune system. Nat Rev Gastroenterol Hepatol, 21(1):35-45. ![]() [25]KorpelaK, SalonenA, VepsäläinenO, et al., 2018. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome, 6:182. ![]() [26]KrishnaM, SalakoA, FofanovaT, et al., 2020. Parental education may differentially impact pediatric inflammatory bowel disease phenotype risk. Inflamm Bowel Dis, 26(7):1068-1076. ![]() [27]KuenzigME, FungSG, MarderfeldL, et al., 2022. Twenty-first century trends in the global epidemiology of pediatric-onset inflammatory bowel disease: systematic review. Gastroenterology, 162(4):1147-1159.E4. ![]() [28]le BerreC, HonapS, Peyrin-BirouletL, 2023. Ulcerative colitis. Lancet, 402(10401):571-584. ![]() [29]LeeIA, KambaA, LowD, et al., 2014. Novel methylxanthine derivative-mediated anti-inflammatory effects in inflammatory bowel disease. World J Gastroenterol, 20(5):1127-1138. ![]() [30]LehriB, AtkinsE, ScottTA, et al., 2024. Investigation into the efficiency of diverse N-linking oligosaccharyltransferases for glycoengineering using a standardised cell-free assay. Microb Biotechnol, 17(6):e14480. ![]() [31]LeibovitzhH, LeeSH, XueMY, et al., 2022. Altered gut microbiome composition and function are associated with gut barrier dysfunction in healthy relatives of patients with Crohn’s disease. Gastroenterology, 163(5):1364-1376.E10. ![]() [32]LiCL, ZhangPR, XieYD, et al., 2024. Enterococcus-derived tyramine hijacks α2A-adrenergic receptor in intestinal stem cells to exacerbate colitis. Cell Host Microbe, 32(6):950-963.E8. ![]() [33]LiuH, HongXL, SunTT, et al., 2020. Fusobacterium nucleatum exacerbates colitis by damaging epithelial barriers and inducing aberrant inflammation. J Dig Dis, 21(7):385-398. ![]() [34]LiuXM, MaoBY, GuJY, et al., 2021. Blautia—a new functional genus with potential probiotic properties? Gut Microbes, 13(1):1875796. ![]() [35]MagočT, SalzbergSL, 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21):2957-2963. ![]() [36]MariA, KhouryT, AhamadHS, et al., 2020. Autoimmune diseases in first- and second-degree relatives of patients with inflammatory bowel diseases: a case-control survey in Israel. Minerva Med, 111(2):107-14. ![]() [37]MartinoC, DilmoreAH, BurchamZM, et al., 2022. Microbiota succession throughout life from the cradle to the grave. Nat Rev Microbiol, 20(12):707-720. ![]() [38]Mirsepasi-LauridsenHC, VallanceBA, KrogfeltKA, et al., 2019. Escherichia coli pathobionts associated with inflammatory bowel disease. Clin Microbiol Rev, 32(2):e00060-18. ![]() [39]MukherjeeA, LordanC, RossRP, et al., 2020. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes, 12(1):1802866. ![]() [40]MukhopadhyaI, HansenR, El-OmarEM, et al., 2012. IBD—what role do proteobacteria play? Nat Rev Gastroenterol Hepatol, 9(4):219-230. ![]() [41]NameirakpamJ, RikhiR, RawatSS, et al., 2020. Genetics on early onset inflammatory bowel disease: an update. Genes Dis, 7(1):93-106. ![]() [42]ÖrtqvistAK, LundholmC, HalfvarsonJ, et al., 2019. Fetal and early life antibiotics exposure and very early onset inflammatory bowel disease: a population-based study. Gut, 68(2):218-225. ![]() [43]PathikkalA, PuthusseriB, DivyaP, et al., 2022. Folate derivatives, 5-methyltetrahydrofolate and 10-formyltetrahydrofolate, protect BEAS-2B cells from high glucose‒induced oxidative stress and inflammation. In Vitro Cell Dev Biol-Anim, 58(5):419-428. ![]() [44]PhamVT, LacroixC, BraeggerCP, et al., 2016. Early colonization of functional groups of microbes in the infant gut. Environ Microbiol, 18(7):2246-2258. ![]() [45]PiovaniD, DaneseS, Peyrin-BirouletL, et al., 2019. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology, 157(3):647-659.E4. ![]() [46]PittayanonR, LauJT, LeontiadisGI, et al., 2020. Differences in gut microbiota in patients with vs without inflammatory bowel diseases: a systematic review. Gastroenterology, 158(4):930-946.E1. ![]() [47]QiC, ZhouJB, TuHY, et al., 2022. Lactation-dependent vertical transmission of natural probiotics from the mother to the infant gut through breast milk. Food Funct, 13(1):304-315. ![]() [48]QiaoSS, LiuC, SunL, et al., 2022. Gut Parabacteroides merdae protects against cardiovascular damage by enhancing branched-chain amino acid catabolism. Nat Metab, 4(10):1271-1286. ![]() [49]RheeKJ, WuSG, WuXQ, et al., 2009. Induction of persistent colitis by a human commensal, enterotoxigenic Bacteroides fragilis, in wild-type C57BL/6 mice. Infect Immun, 77(4):1708-1718. ![]() [50]SearsCL, GeisAL, HousseauF, 2014. Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest, 124(10):4166-4172. ![]() [51]SegataN, IzardJ, WaldronL, et al., 2011. Metagenomic biomarker discovery and explanation. Genome Biol, 12(6):R60. ![]() [52]ShenhavL, ThompsonM, JosephTA, et al., 2019. FEAST: fast expectation-maximization for microbial source tracking. Nat Methods, 16(7):627-632. ![]() [53]SunXW, ChenZH, YuL, et al., 2023. Bacteroides dorei BDX-01 alleviates DSS-induced experimental colitis in mice by regulating intestinal bile salt hydrolase activity and the FXR-NLRP3 signaling pathway. Front Pharmacol, 14:1205323. ![]() [54]SunY, XieRX, LiL, et al., 2021. Prenatal maternal stress exacerbates experimental colitis of offspring in adulthood. Front Immunol, 12:700995. ![]() [55]TianM, LiQH, ZhengTH, et al., 2023. Maternal microbe-specific modulation of the offspring microbiome and development during pregnancy and lactation. Gut Microbes, 15(1):2206505. ![]() [56]Valles-ColomerM, Blanco-MíguezA, ManghiP, et al., 2023. The person-to-person transmission landscape of the gut and oral microbiomes. Nature, 614(7946):125-135. ![]() [57]VelosaM, HochnerH, YerushalmiB, et al., 2022. Pre- and perinatal factors predicting inflammatory bowel disease: a population-based study with fifty years of follow-up. J Crohns Colitis, 16(9):1397-1404. ![]() [58]WangSP, RyanCA, BoyavalP, et al., 2020. Maternal vertical transmission affecting early-life microbiota development. Trends Microbiol, 28(1):28-45. ![]() [59]WangQZ, DengZT, LanJ, et al., 2022. Inhibition of GABAAR or application of Lactobacillus casei Zhang alleviates ulcerative colitis in mice: GABAAR as a potential target for intestinal epithelial renewal and repair. Int J Mol Sci, 23(19):11210. ![]() [60]WangXQ, XiaoY, XuX, et al., 2021. Characteristics of fecal microbiota and machine learning strategy for fecal invasive biomarkers in pediatric inflammatory bowel disease. Front Cell Infect Microbiol, 11:711884. ![]() [61]XiaoLW, ZhaoFQ, 2023. Microbial transmission, colonisation and succession: from pregnancy to infancy. Gut, 72(4):772-786. ![]() [62]ZhaoJ, BaiM, NingXX, et al., 2022. Expansion of Escherichia-Shigella in gut is associated with the onset and response to immunosuppressive therapy of IgA nephropathy. J Am Soc Nephrol, 33(12):2276-2292. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2026 Journal of Zhejiang University-SCIENCE | ||||||||||||||



ORCID:
Open peer comments: Debate/Discuss/Question/Opinion
<1>