CLC number:
On-line Access: 2025-05-28
Received: 2024-07-24
Revision Accepted: 2024-11-09
Crosschecked: 2025-05-29
Cited: 0
Clicked: 465
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0009-0001-3017-2423
Ruofan JIN, Ruhong ZHOU, Dong ZHANG. Recent advances in antibody optimization based on deep learning methods[J]. Journal of Zhejiang University Science B,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.B2400387 @article{title="Recent advances in antibody optimization based on deep learning methods", %0 Journal Article TY - JOUR
基于深度学习方法的抗体优化研究进展1浙江大学生命科学学院定量生物中心, 中国杭州市, 310058 2浙江大学医学院附属第一医院肝胆胰外科, 中国杭州市, 310058 摘要:当前,抗体已成为多种疾病治疗的重要工具,快速高效地优化其理化性质是抗体药物开发过程中的关键环节。随着人工智能技术发展,特别是深度学习方法在生物学领域中取得的显著突破,各类计算方法被广泛应用于抗体优化环节中,以降低开发成本并提升抗体优化的成功率。本文对近年来基于深度学习的抗体优化策略进行综述,重点探讨了深度学习模型构建中关键的数据集资源及算法输入的数据类型;分析了当前深度学习算法在抗体优化应用中所面临的主要挑战;展望了未来通用型深度学习算法在该领域的发展方向及潜在的解决策略。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AbramsonJ, AdlerJ, DungerJ, et al., 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 630(8016):493-500. ![]() [2]AkbarR, BashourH, RawatP, et al., 2022. Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies. mAbs, 14(1):2008790. ![]() [3]AkterJ, KhouryDS, AogoR, et al., 2019. Plasmodium-specific antibodies block in vivo parasite growth without clearing infected red blood cells. PLoS Pathog, 15(2):e1007599. ![]() [4]AnsariHR, FlowerDR, RaghavaGPS, 2010. AntigenDB: an immunoinformatics database of pathogen antigens. Nucleic Acids Res, 38(suppl_1):D847-D853. ![]() [5]ApweilerR, BairochA, WuCH, et al., 2004. UniProt: the Universal Protein knowledgebase. Nucleic Acids Res, 32(suppl_1):D115-D119. ![]() [6]BairochA, ApweilerR, 1997. The SWISS-PROT protein sequence data bank and its supplement TrEMBL. Nucleic Acids Res, 25(1):31-36. ![]() [7]BaldoBA, 2022. Immune- and non-immune-mediated adverse effects of monoclonal antibody therapy: a survey of 110 approved antibodies. Antibodies, 11(1):17. ![]() [8]BennettNR, WatsonJL, RagotteRJ, et al., 2024. Atomically accurate de novo design of single-domain antibodies. bioRxiv, preprint. ![]() [9]BermanHM, WestbrookJ, FengZK, et al., 2000. The protein data bank. Nucleic Acids Res, 28(1):235-242. ![]() [10]BonicheC, RossiSA, KischkelB, et al., 2020. Immunotherapy against systemic fungal infections based on monoclonal antibodies. J Fungi, 6(1):31. ![]() [11]ChenJH, WeiGW, 2022. Mathematical artificial intelligence design of mutation-proof COVID-19 monoclonal antibodies. Commun Inf Syst, 22(3):339-361. ![]() [12]ChenJM, SawyerN, ReganL, 2013. Protein‒protein interactions: general trends in the relationship between binding affinity and interfacial buried surface area. Protein Sci, 22(4):510-515. ![]() [13]CrescioliS, KaplonH, ChenowethA, et al., 2024. Antibodies to watch in 2024. mAbs, 16(1):2297450. ![]() [14]do PazoC, NawazK, WebsterRM, 2021. The oncology market for antibody‒drug conjugates. Nat Rev Drug Discov, 20(8):583-584. ![]() [15]DoronI, MeskoM, LiXV, et al., 2021. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn’s disease. Nat Microbiol, 6(12):1493-1504. ![]() [16]DouguetD, ChenHC, TovchigrechkoA, et al., 2006. Dockground resource for studying protein‒protein interfaces. Bioinformatics, 22(21):2612-2618. ![]() [17]DunbarJ, KrawczykK, LeemJ, et al., 2014. SAbDab: the structural antibody database. Nucl Acids Res, 42(D1):D1140-D1146. ![]() [18]EvansR, O'NeillM, PritzelA, et al., 2021. Protein complex prediction with AlphaFold-Multimer. bioRxiv, preprint. ![]() [19]GravesJ, ByerlyJ, PriegoE, et al., 2020. A review of deep learning methods for antibodies. Antibodies, 9(2):12. ![]() [20]GuoZL, YamaguchiR, 2022. Machine learning methods for protein-protein binding affinity prediction in protein design. Front Bioinform, 2:1065703. ![]() [21]GuptaR, SrivastavaD, SahuM, et al., 2021. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol Divers, 25(3):1315-1360. ![]() [22]HernandezI, BottSW, PatelAS, et al., 2018. Pricing of monoclonal antibody therapies: higher if used for cancer? Am J Manag Care, 24(2):109-112. ![]() [23]HouWP, ShangXY, JiZC, 2023. Benchmarking large language models for genomic knowledge with GeneTuring. bioRxiv, preprint. ![]() [24]JankauskaitėJ, Jiménez-GarcíaB, DapkūnasJ, et al., 2019. SKEMPI 2.0: an updated benchmark of changes in protein‒protein binding energy, kinetics and thermodynamics upon mutation. Bioinformatics, 35(3):462-469. ![]() [25]JinRF, YeQ, WangJK, et al., 2024. AttABseq: an attention-based deep learning prediction method for antigen‒antibody binding affinity changes based on protein sequences. Brief Bioinform, 25(4):bbae304. ![]() [26]JumperJ, EvansR, PritzelA, et al., 2021. Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873):583-589. ![]() [27]KangY, LengDW, GuoJJ, et al., 2022. Sequence-based deep learning antibody design for in silico antibody affinity maturation. arXiv:2103.03724. ![]() [28]KaplonH, CrescioliS, ChenowethA, et al., 2023. Antibodies to watch in 2023. mAbs, 15(1):2153410. ![]() [29]KöhlerG, MilsteinC, 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256(5517):495-497. ![]() [30]LamHYI, OngXE, MutwilM, 2024. Large language models in plant biology. Trends Plant Sci, 29(10):1145-1155. ![]() [31]LeeM, 2023. Recent advances in deep learning for protein-protein interaction analysis: a comprehensive review. Molecules, 28(13):5169. ![]() [32]ListovD, GoverdeCA, CorreiaBE, et al., 2024. Opportunities and challenges in design and optimization of protein function. Nat Rev Mol Cell Biol, 25(8):639-653. ![]() [33]LiuG, ZengHY, MuellerJ, et al., 2020. Antibody complementarity determining region design using high-capacity machine learning. Bioinformatics, 36(7):2126-2133. ![]() [34]LiuXG, LuoYN, LiPY, et al., 2021. Deep geometric representations for modeling effects of mutations on protein-protein binding affinity. PLoS Comput Biol, 17(8):e1009284. ![]() [35]LubianaT, LopesR, MedeirosP, et al., 2023. Ten quick tips for harnessing the power of ChatGPT in computational biology. PLoS Comput Biol, 19(8):e1011319. ![]() [36]MakowskiEK, KinnunenPC, HuangJ, et al., 2022. Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space. Nat Commun, 13:3788. ![]() [37]MasonDM, FriedensohnS, WeberCR, et al., 2021. Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning. Nat Biomed Eng, 5(6):600-612. ![]() [38]MastropietroA, PasculliG, BajorathJ, 2023. Learning characteristics of graph neural networks predicting protein‒ligand affinities. Nat Mach Intell, 5(12):1427-1436. ![]() [39]MeliR, MorrisGM, BigginPC, 2022. Scoring functions for protein-ligand binding affinity prediction using structure-based deep learning: a review. Front Bioinform, 2:885983. ![]() [40]MullardA, 2021. FDA approves 100th monoclonal antibody product. Nat Rev Drug Discov, 20(7):491-495. ![]() [41]NotinP, RollinsN, GalY, et al., 2024. Machine learning for functional protein design. Nat Biotechnol, 42(2):216-228. ![]() [42]O'SheaK, NashR, 2015. An introduction to convolutional neural networks. arXiv:1511.08458. ![]() [43]PiresDEV, AscherDB, 2016. mCSM-AB: a web server for predicting antibody‒antigen affinity changes upon mutation with graph-based signatures. Nucleic Acids Res, 44(W1):W469-W473. ![]() [44]RéauM, RenaudN, XueLC, et al., 2023. DeepRank-GNN: a graph neural network framework to learn patterns in protein‒protein interfaces. Bioinformatics, 39(1):btac759. ![]() [45]ShanSS, LuoST, YangZQ, et al., 2022. Deep learning guided optimization of human antibody against SARS-CoV-2 variants with broad neutralization. Proc Natl Acad Sci USA, 119(11):e2122954119. ![]() [46]SilverD, HuangA, MaddisonCJ, et al., 2016. Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484-489. ![]() [47]SirinS, ApgarJR, BennettEM, et al., 2016. AB‐bind: antibody binding mutational database for computational affinity predictions. Protein Sci, 25(2):393-409. ![]() [48]SoleymaniF, PaquetE, ViktorH, et al., 2022. Protein‒protein interaction prediction with deep learning: a comprehensive review. Comput Struct Biotechnol J, 20:5316-5341. ![]() [49]SoleymaniF, PaquetE, ViktorHL, et al., 2023. ProtInteract: a deep learning framework for predicting protein‒protein interactions. Comput Struct Biotechnol J, 21:1324-1348. ![]() [50]SunXY, YiCY, ZhuYF, et al., 2022. Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2. Nat Microbiol, 7(7):1063-1074. ![]() [51]SzklarczykD, KirschR, KoutrouliM, et al., 2023. The STRING database in 2023: protein‒protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res, 51(D1):D638-D646. ![]() [52]ThirumalaiD, Visaga AmbiS, Vieira-PiresRS, et al., 2019. Chicken egg yolk antibody (IgY) as diagnostics and therapeutics in parasitic infections‒a review. Int J Biol Macromol, 136:755-763. ![]() [53]ToselandCP, ClaytonDJ, McSparronH, et al., 2005. AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res, 1:4. ![]() [54]TovchigrechkoA, VakserIA, 2006. GRAMM-X public web server for protein‒protein docking. Nucleic Acids Res, 34(suppl_2):W310-W314. ![]() [55]VitaR, MahajanS, OvertonJA, et al., 2019. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res, 47(D1):D339-D343. ![]() [56]WangGY, LiuXH, WangK, et al., 2023. Deep-learning-enabled protein‒protein interaction analysis for prediction of SARS-CoV-2 infectivity and variant evolution. Nat Med, 29(8):2007-2018. ![]() [57]WangML, CangZX, WeiGW, 2020. A topology-based network tree for the prediction of protein‒protein binding affinity changes following mutation. Nat Mach Intell, 2(2):116-123. ![]() [58]WangRX, FangXL, LuYP, et al., 2004. The PDBbind database: collection of binding affinities for protein‒ligand complexes with known three-dimensional structures. J Med Chem, 47(12):2977-2980. ![]() [59]WilmanW, WróbelS, BielskaW, et al., 2022. Machine-designed biotherapeutics: opportunities, feasibility and advantages of deep learning in computational antibody discovery. Brief Bioinform, 23(4):bbac267. ![]() [60]WuZH, PanSR, ChenFW, et al., 2021. A comprehensive survey on graph neural networks. IEEE Trans Neural Netw Learn Syst, 32(1):4-24. ![]() [61]YoungC, LauAWY, BurnettDL, 2022. B cells in the balance: offsetting self-reactivity avoidance with protection against foreign. Front Immunol, 13:951385. ![]() [62]ZhaoY, HeB, XuF, et al., 2023. DeepAIR: a deep learning framework for effective integration of sequence and 3D structure to enable adaptive immune receptor analysis. Sci Adv, 9(32):eabo5128. ![]() [63]ZhengW, ZhaoWJ, WuM, et al., 2020. Microbiota-targeted maternal antibodies protect neonates from enteric infection. Nature, 577(7791):543-548. ![]() [64]ZurawskiDV, McLendonMK, 2020. Monoclonal antibodies as an antibacterial approach against bacterial pathogens. Antibiotics, 9(4):155. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>