Full Text:  <3005>

CLC number: TP242.6

On-line Access: 2022-06-17

Received: 2020-09-09

Revision Accepted: 2021-10-08

Crosschecked: 2022-07-05

Cited: 0

Clicked: 3308

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Donghai WANG

https://orcid.org/0000-0002-4523-8480

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Sensor-guided gait-synchronization lower-extremity-exoskeleton for potential application on unilateral knee-injured people


Author(s):  Donghai WANG

Affiliation(s):  State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan430074, China; more

Corresponding email(s):  donghaiwang@hust.edu.cn

Key Words:  Sensor-guided; Lower-extremity-exoskeleton; Body sensor network; Gait synchronization; Weight-support


Share this article to: More <<< Previous Paper|Next Paper >>>

Donghai WANG. Sensor-guided gait-synchronization lower-extremity-exoskeleton for potential application on unilateral knee-injured people[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2000465

@article{title="Sensor-guided gait-synchronization lower-extremity-exoskeleton for potential application on unilateral knee-injured people",
author="Donghai WANG",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2000465"
}

%0 Journal Article
%T Sensor-guided gait-synchronization lower-extremity-exoskeleton for potential application on unilateral knee-injured people
%A Donghai WANG
%J Frontiers of Information Technology & Electronic Engineering
%P 920-936
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2000465"

TY - JOUR
T1 - Sensor-guided gait-synchronization lower-extremity-exoskeleton for potential application on unilateral knee-injured people
A1 - Donghai WANG
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 920
EP - 936
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2000465"


Abstract: 
This paper presents a sensor-guided gait-synchronization system to help potential unilateral knee-injured people walk normally with a weight-supported lower-extremity-exoskeleton (LEE). This relieves the body weight loading on the knee-injured leg and synchronizes its motion with that of the healthy leg during the swing phase of walking. The sensor-guided gait-synchronization system is integrated with a body sensor network designed to sense the motion/gait of the healthy leg. Guided by the measured joint-angle trajectories, the motorized hip joint lifts the links during walking and synchronizes the knee-injured gait with the healthy gait by a half-cycle delay. The effectiveness of the LEE is illustrated experimentally. We compare the measured joint-angle trajectories between the healthy and knee-injured legs, the simulated knee forces, and the human-exoskeleton interaction forces. The results indicate that the motorized hip-controlled LEE can synchronize the motion/gait of the combined body-weight-supported LEE and injured leg with that of the healthy leg.

潜在用于单侧膝受伤患者的传感引导步态同步下肢外骨骼

王东海1,2
1华中科技大学数字制造装备与技术国家重点实验室,中国武汉市,430074
2广东思谷智能技术有限公司,中国东莞市,523808
摘要:本文展示了一种可潜在帮助单侧膝受伤患者正常行走的传感引导步态同步下肢外骨骼系统。外骨骼能够减轻人体体重对受伤膝下肢的负载,并维持与健康侧下肢行走步态摆动相同步。传感引导步态同步系统集成了人体传感网络,它能感知健康侧下肢的运动步态。基于测量的关节角度轨迹引导,安装电机的髋关节在行走中提起腿杆,并将膝受伤步态和健康步态以半周期延时进行同步。实验验证了下肢外骨骼的效果。本文比较了健康腿和膝受伤腿的测量关节角度轨迹、仿真的膝受力、人机交互力等方面,结果说明髋关节安装电机受控制的下肢外骨骼能够将受伤腿和体重支撑外骨骼的融合步态与健康腿步态进行同步。

关键词组:传感引导;下肢外骨骼;人体传感网络;步态同步;体重支撑

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Barton G, Lisboa P, Lees A, et al., 2007. Gait quality assessment using self-organising artificial neural networks. Gait Post, 25(3):374-379.

[2]Brophy R, Silvers HJ, Gonzales T, et al., 2010. Gender influences: the role of leg dominance in ACL injury among soccer players. Br J Sports Med, 44(10):694-697.

[3]Chen B, Zhong CH, Zhao X, et al., 2019. Reference joint trajectories generation of CUHK-EXO exoskeleton for system balance in walking assistance. IEEE Access, 7:33809-33821.

[4]Chen G, Qi P, Guo Z, et al., 2017. Gait-event-based synchronization method for gait rehabilitation robots via a bioinspired adaptive oscillator. IEEE Trans Biomed Eng, 64(6):1345-1356.

[5]Dollar AM, Herr H, 2008. Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Trans Robot, 24(1):144-158.

[6]Gupta R, Khanna T, Masih GD, et al., 2016. Acute anterior cruciate ligament injuries in multisport elite players: demography, association, and pattern in different sports. J Clin Orthop Trauma, 7(3):187-192.

[7]He Y, Li N, Wang C, et al., 2019. Development of a novel autonomous lower extremity exoskeleton robot for walking assistance. Front Inform Technol Electron Eng, 20(3):318-329.

[8]Herzog W, Read LJ, 1993. Lines of action and moment arms of the major force-carrying structures crossing the human knee joint. J Anat, 182(2):213-230.

[9]Hootman JM, Dick R, Agel J, 2007. Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train, 42(2):311-319.

[10]Kang I, Kunapuli P, Young AJ, 2020. Real-time neural network-based gait phase estimation using a robotic hip exoskeleton. IEEE Trans Med Robot Bion, 2(1):28-37.

[11]Kellis E, 2001. Tibiofemoral joint forces during maximal isokinetic eccentric and concentric efforts of the knee flexors. Clin Biomech, 16(3):229-236.

[12]Kim H, Shin YJ, Kim J, 2017. Design and locomotion control of a hydraulic lower extremity exoskeleton for mobility augmentation. Mechatronics, 46:32-45.

[13]Lee KM, Wang DH, 2015. Design analysis of a passive weight-support lower-extremity-exoskeleton with compliant knee-joint. Proc IEEE Int Conf on Robotics and Automation, p.5572-5577.

[14]Li GY, Liu T, Yi JG, et al., 2016. The lower limbs kinematics analysis by wearable sensor shoes. IEEE Sens J, 16(8):2627-2638.

[15]Li ZJ, Ren Z, Zhao KK, et al., 2020. Human-cooperative control design of a walking exoskeleton for body weight support. IEEE Trans Ind Inform, 16(5):2985-2996.

[16]Lin F, Wang AS, Zhuang Y, et al., 2016. Smart insole: a wearable sensor device for unobtrusive gait monitoring in daily life. IEEE Trans Ind Inform, 12(6):2281-2291.

[17]Liu Q, Qian GM, Meng W, et al., 2019. A new IMMU-based data glove for hand motion capture with optimized sensor layout. Int J Intell Robot Appl, 3:19-32.

[18]Liu XH, Wang QN, 2020. Real-time locomotion mode recognition and assistive torque control for unilateral knee exoskeleton on different terrains. IEEE/ASME Trans Mechatron, 25(6):2722-2732.

[19]Long Y, Du ZJ, Wang WD, et al., 2018. Physical human-robot interaction estimation based control scheme for a hydraulically actuated exoskeleton designed for power amplification. Front Inform Technol Electron Eng, 19(9):1076-1085.

[20]Lugade V, Lin V, Farley A, et al., 2014. An artificial neural network estimation of gait balance control in the elderly using clinical evaluations. PLoS ONE, 9(5):e97595.

[21]Malcolm P, Galle S, van den Berghe P, et al., 2018. Exoskeleton assistance symmetry matters: unilateral assistance reduces metabolic cost, but relatively less than bilateral assistance. J Neuroeng Rehabil, 15(1):74.

[22]Mizukami N, Takeuchi S, Tetsuya M, et al., 2018. Effect of the synchronization-based control of a wearable robot having a non-exoskeletal structure on the hemiplegic gait of stroke patients. IEEE Trans Neur Syst Rehabil Eng, 26(5):1011-1016.

[23]Thambyah A, Pereira BP, Wyss U, 2005. Estimation of bone-on-bone contact forces in the tibiofemoral joint during walking. Knee, 12(5):383-388.

[24]Tsukahara A, Hasegawa Y, Eguchi K, et al., 2015. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed. IEEE Trans Neur Syst Rehabil Eng, 23(2):308-318.

[25]Uddin MZ, Hassan MM, Alsanad A, et al., 2020. A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare. Inform Fus, 55:105-115.

[26]Wang DH, Lee KM, Ji JJ, 2016. A passive gait-based weight-support lower extremity exoskeleton with compliant joints. IEEE Trans Robot, 32(4):933-942.

[27]Wang TM, Pei X, Hou TG, et al., 2020. An untethered cable-driven ankle exoskeleton with plantarflexion-dorsiflexion bidirectional movement assistance. Front Inform Technol Electron Eng, 21(5):723-739.

[28]Wang ZL, Zhao HY, Qiu S, et al., 2015. Stance-phase detection for ZUPT-aided foot-mounted pedestrian navigation system. IEEE Trans Mechatron, 20(6):3170-3181.

[29]Yu H, Wang DH, Yang CJ, et al., 2010. A walking monitoring shoe system for simultaneous plantar-force measurement and gait-phase detection. Proc IEEE/ASME Int Conf on Advanced Intelligent Mechatronics, p.207-212.

[30]Zhang C, Liu GF, Li CL, et al., 2016. Development of a lower limb rehabilitation exoskeleton based on real-time gait detection and gait tracking. Adv Mech Eng, 8(1):1-9.

[31]Zhang T, Tran M, Huang H, 2018. Design and experimental verification of hip exoskeleton with balance capacities for walking assistance. IEEE/ASME Trans Mechatron, 23(1):274-285.

[32]Zheng NQ, Fleisig GS, Escamilla RF, et al., 1998. An analytical model of the knee for estimation of internal forces during exercise. J Biomech, 31(10):963-967.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE