CLC number: TP39
On-line Access: 2022-10-24
Received: 2021-11-14
Revision Accepted: 2022-10-24
Crosschecked: 2022-06-24
Cited: 0
Clicked: 1357
Citations: Bibtex RefMan EndNote GB/T7714
https://orcid.org/0000-0001-6310-8965
Wenyong ZHANG, Dawen XIA, Guoyan CHANG, Yang HU, Yujia HUO, Fujian FENG, Yantao LI, Huaqing LI. APFD: an effective approach to taxi route recommendation with mobile trajectory big data[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2100530 @article{title="APFD: an effective approach to taxi route recommendation with mobile trajectory big data", %0 Journal Article TY - JOUR
APFD:面向移动轨迹大数据的出租车路径推荐方法1贵州民族大学数据科学与信息工程学院,中国贵阳市,550025 2贵州交通技师学院汽车工程系,中国贵阳市,550008 3重庆大学计算机科学学院,中国重庆市,400044 4西南大学电子与信息工程学院,中国重庆市,400715 5贵州医科大学附属医院,中国贵阳市,550001 摘要:随着数据驱动智能交通系统的迅猛发展,高效的出租车路径推荐方法成为智慧城市的研究热点。基于移动轨迹大数据,提出一种基于人工势场(APF)和Dijkstra方法的出租车路径推荐方法。为提高路径推荐效率,提出一种区域提取方法,该方法通过原点和终点坐标搜索包含最优路径的区域。基于APF方法,提出一种有效的冗余节点去除方法。最后,通过Dijkstra方法推荐最优路径。将APFD方法应用于仿真地图和北京四环的实际路网。在地图上随机选取20对起点和终点坐标,采用APFD方法、蚁群(AC)算法、贪婪算法(A•)、APF、迅速探索随机树(RRT)、非支配排序遗传算法-II(NSGA-II)、粒子群算法(PSO)和Dijkstra算法进行最短路径推荐。在最短路径规划方面,与AC、A•、APF、RRT、NSGA-II和PSO相比,APFD的路径规划能力分别提高了1.45%–39.56%、4.64%–54.75%、8.59%–37.25%、5.06%–45.34%、0.94%–20.40%和2.43%–38.31%。与Dijkstra算法相比,APFD的执行效率提高了1.03–27.75倍。此外,在北京四环实际路网中,APFD推荐最短路径的能力优于AC、A•、APF、RRT、NSGA-II和PSO,且APFD的执行效率高于Dijkstra方法。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Agarwal D, Bharti PS, 2020. Nature inspired evolutionary approaches for robot navigation: survey. J Inform Optim Sci, 41(2):421-436. ![]() [2]Ajeil FH, Ibraheem IK, Sahib MA, et al., 2020. Multi-objective path planning of an autonomous mobile robot using hybrid PSO-MFB optimization algorithm. Appl Soft Comput, 89:106076. ![]() [3]Akram M, Habib A, Alcantud JCR, 2021. An optimization study based on Dijkstra algorithm for a network with trapezoidal picture fuzzy numbers. Neur Comput Appl, 33(4):1329-1342. ![]() [4]Algfoor ZA, Sunar MS, Abdullah A, 2017. A new weighted pathfinding algorithms to reduce the search time on grid maps. Expert Syst Appl, 71:319-331. ![]() [5]Danilovic M, Vasiljevic D, Cvetic B, 2021. A novel pseudo-polynomial approach for shortest path problems. Networks, 78(2):107-127. ![]() [6]He ZC, Chen KY, Chen XY, 2018. A collaborative method for route discovery using taxi drivers’ experience and preferences. IEEE Trans Intell Transp Syst, 19(8):2505-2514. ![]() [7]Hoy M, Matveev AS, Savkin AV, 2015. Algorithms for collision-free navigation of mobile robots in complex cluttered environments: a survey. Robotica, 33(3):463-497. ![]() [8]Huang Y, Ying JJC, Yu PS, et al., 2021. Dynamic graph mining for multi-weight multi-destination route planning with deadlines constraints. ACM Trans Knowl Discov Data, 15(1):3. ![]() [9]Ji SG, Wang ZY, Li TR, et al., 2020. Spatio-temporal feature fusion for dynamic taxi route recommendation via deep reinforcement learning. Knowl-Based Syst, 205:106302. ![]() [10]Jiao ZQ, Ma K, Rong YL, et al., 2018. A path planning method using adaptive polymorphic ant colony algorithm for smart wheelchairs. J Comput Sci, 25:50-57. ![]() [11]Kou CX, Hu DD, Yuan JH, et al., 2020. Bisection and exact algorithms based on the Lagrangian dual for a single-constrained shortest path problem. IEEE/ACM Trans Netw, 28(1):224-233. ![]() [12]Lai YX, Lv Z, Li KC, et al., 2019. Urban traffic Coulomb’s law: a new approach for taxi route recommendation. IEEE Trans Intell Transp Syst, 20(8):3024-3037. ![]() [13]Lin BL, Zhao YN, Lin RX, et al., 2021. Integrating traffic routing optimization and train formation plan using simulated annealing algorithm. Appl Math Modell, 93:811-830. ![]() [14]Mac TT, Copot C, Tran DT, et al., 2016. Heuristic approaches in robot path planning: a survey. Rob Auton Syst, 86:13-28. ![]() [15]Mavrovouniotis M, Li CH, Yang SX, 2017. A survey of swarm intelligence for dynamic optimization: algorithms and applications. Swarm Evol Comput, 33:1-17. ![]() [16]Nazarahari M, Khanmirza E, Doostie S, 2019. Multi-objective multi-robot path planning in continuous environment using an enhanced genetic algorithm. Expert Syst Appl, 115:106-120. ![]() [17]Nimmagadda MR, Dattawadkar S, Muthukumar S, et al., 2020. Adaptive directional path planner for real-time, energy-efficient, robust navigation of mobile robots. Proc IEEE Int Conf on Robotics and Automation, p.455-461. ![]() [18]Parimala M, Broumi S, Prakash K, et al., 2021. Bellman–Ford algorithm for solving shortest path problem of a network under picture fuzzy environment. Compl Intell Syst, 7(5):2373-2381. ![]() [19]Przybylski A, Gandibleux X, 2017. Multi-objective branch and bound. Eur J Oper Res, 260(3):856-872. ![]() [20]Qin GY, Li TN, Yu B, et al., 2017. Mining factors affecting taxi drivers’ incomes using GPS trajectories. Transp Res Part C Emerg Technol, 79:103-118. ![]() [21]Qu BT, Yang WX, Cui G, et al., 2020. Profitable taxi travel route recommendation based on big taxi trajectory data. IEEE Trans Intell Transp Syst, 21(2):653-668. ![]() [22]Rizk Y, Awad M, Tunstel EW, 2018. Decision making in multiagent systems: a survey. IEEE Trans Cogn Dev Syst, 10(3):514-529. ![]() [23]Santos FA, Rodrigues DO, Silva TH, et al., 2018. Context-aware vehicle route recommendation platform: exploring open and crowdsourced data. Proc IEEE Int Conf on Communications, p.1-7. ![]() [24]Schaller Consulting, 2006. The New York City Taxicab Fact Book. Schaller Consulting, Brooklyn, UK. ![]() [25]Sharma K, Doriya R, 2020. Path planning for robots: an elucidating draft. Int J Intell Robot Appl, 4(3):294-307. ![]() [26]Sinyukov DA, Padir T, 2020. CWave: theory and practice of a fast single-source any-angle path planning algorithm. Robotica, 38(2):207-234. ![]() [27]Wang JK, Meng MQH, 2020. Optimal path planning using generalized Voronoi graph and multiple potential functions. IEEE Trans Ind Electron, 67(12):10621-10630. ![]() [28]Wang JK, Chi WZ, Li CM, et al., 2020. Neural RRT*: learning-based optimal path planning. IEEE Trans Autom Sci Eng, 17(4):1748-1758. ![]() [29]Wang YS, Zheng XP, Chen W, et al., 2021. Robust and accurate optimal transportation map by self-adaptive sampling. Front Inform Technol Electron Eng, 22(9):1207-1220. ![]() [30]Wu N, Wang JY, Zhao WX, et al., 2019. Learning to effectively estimate the travel time for fastest route recommendation. Proc 28th ACM Int Conf on Information and Knowledge Management, p.1923-1932. ![]() [31]Wu TQ, Yao M, Yang JH, 2016. Dolphin swarm algorithm. Front Inform Technol Electron Eng, 17(8):717-729. ![]() [32]Yang SY, Ning LJ, Tong LC, et al., 2021. Optimizing electric vehicle routing problems with mixed backhauls and recharging strategies in multi-dimensional representation network. Expert Syst Appl, 176:114804. ![]() [33]Zajac S, Huber S, 2021. Objectives and methods in multi-objective routing problems: a survey and classification scheme. Eur J Oper Res, 290(1):1-25. ![]() [34]Zhang XJ, Jia W, Guan XM, et al., 2019. Optimized deployment of a radar network based on an improved firefly algorithm. Front Inform Technol Electron Eng, 20(3):425-437. ![]() [35]Zhang Y, Li LL, Lin HC, et al., 2019. Development of path planning approach using improved A-star algorithm in AGV system. J Int Technol, 20(3):915-924. ![]() [36]Zhu DD, Sun JQ, 2021. A new algorithm based on Dijkstra for vehicle path planning considering intersection attribute. IEEE Access, 9:19761-19775. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>