Full Text:  <1345>

Summary:  <227>

CLC number: TN015

On-line Access: 2023-02-27

Received: 2022-06-18

Revision Accepted: 2022-10-30

Crosschecked: 2023-02-27

Cited: 0

Clicked: 1128

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Yahui ZHU

https://orcid.org/0000-0003-0230-8271

Jianxin CHEN

https://orcid.org/0000-0002-8703-5294

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Compact input-reflectionless balanced bandpass filter with flexible bandwidth using three-line coupled structure


Author(s):  Yahui ZHU, Jing CAI, Wei QIN, Wenwen YANG, Jianxin CHEN

Affiliation(s):  School of Information Science and Technology, Nantong University, Nantong 226019, China; more

Corresponding email(s):  jjxchen@hotmail.com

Key Words:  Input-reflectionless filter; Balanced bandpass filter (BPF); Differential mode (DM); Common mode (CM); Three-line coupled structure (TLCS)


Share this article to: More <<< Previous Paper|

Yahui ZHU, Jing CAI, Wei QIN, Wenwen YANG, Jianxin CHEN. Compact input-reflectionless balanced bandpass filter with flexible bandwidth using three-line coupled structure[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2200261

@article{title="Compact input-reflectionless balanced bandpass filter with flexible bandwidth using three-line coupled structure",
author="Yahui ZHU, Jing CAI, Wei QIN, Wenwen YANG, Jianxin CHEN",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2200261"
}

%0 Journal Article
%T Compact input-reflectionless balanced bandpass filter with flexible bandwidth using three-line coupled structure
%A Yahui ZHU
%A Jing CAI
%A Wei QIN
%A Wenwen YANG
%A Jianxin CHEN
%J Frontiers of Information Technology & Electronic Engineering
%P 314-326
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2200261"

TY - JOUR
T1 - Compact input-reflectionless balanced bandpass filter with flexible bandwidth using three-line coupled structure
A1 - Yahui ZHU
A1 - Jing CAI
A1 - Wei QIN
A1 - Wenwen YANG
A1 - Jianxin CHEN
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 314
EP - 326
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2200261"


Abstract: 
A compact input-reflectionless balanced bandpass filter (BPF) with flexible bandwidth (BW) using a three-line coupled structure (TLCS) is presented in this paper. For the differential mode (DM), the TLCS is applied to achieve the bandpass response; meanwhile, the input coupled-feed line of the TLCS is reused in the input absorption network. This design shows a good fusion of the absorptive and BPF sections, effectively reducing the circuit size, and the BWs of the two sections that can be controlled separately result in a flexibly controllable DM response BW of the proposed input-reflectionless balanced BPF. Detailed analyses of the ratio of the two-part BWs have been given for the first time, which is vital for the passband flatness and reflectionless feature. In the codesign of this work, the input-reflectionless DM bandpass response can be optimized easily, while wideband common mode (CM) noise absorption is achieved by the input absorption network. To verify the design method, a prototype with a compact layout (0.52λ×0.36λ) is designed and measured in the 0‍‒‍7.0 GHz range. The DM center frequency (f0) is 2.45 GHz with a measured 3 dB fractional bandwidth of 31.4%. The simulation and measurement results with good agreement are presented, showing good performance, e.g., low insertion loss (0.43 dB), wide upper stopband for the DM bandpass response (over 20 dB rejection level up to 2.72f0), and wideband DM reflectionless and CM noise absorption (fractional absorption bandwidth of 285.7%).

基于三线耦合结构的具有灵活带宽的紧凑型平衡式输入无反射带通滤波器

朱雅慧1,2,蔡璟1,2,秦伟1,2,杨汶汶1,2,陈建新1,2
1南通大学信息科学技术学院,中国南通市,226019
2南通大学智能信息技术研究中心,中国南通市,226019
摘要:本文提出一种基于三线耦合结构的具有灵活带宽的紧凑型平衡式输入无反射带通滤波器。在差模模式下,带通响应由三线耦合结构实现,同时三线耦合结构的输入耦合馈线被输入吸收网络复用。带通滤波部分和吸收部分实现了良好的融合,有效地减小了电路尺寸,并且两部分的带宽独立可控,进而使得该滤波器的差模响应带宽具有灵活可控的特性。此外,首次对两部分的带宽比进行详细分析,以获得通带平坦度与无反射性能的良好折衷。因此,该协同设计的输入无反射差模带通响应具有易于优化的特点。同时,输入端的吸收网络还实现了宽频带内的共模噪声吸收。为了验证该设计方法,设计了一款尺寸为0.52λ×0.36λ的平衡式输入无反射滤波器,测量范围为0-7.0 GHz。测得差模响应的中心频率为2.45 GHz,3 dB相对带宽为31.4%。实测和仿真结果展现了良好的一致性,并且该滤波器具有0.43 dB的低插入损耗、较宽的差模上阻带(超过20 dB的抑制水平至2.72倍频)以及宽带的差模无反射和共模噪声吸收(吸收相对带宽为285.7%)等优点。

关键词组:输入无反射滤波器;平衡式带通滤波器;差模;共模;三线耦合结构

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Bi XJ, Zeng X, Xu QF, 2020. Slotline-based balanced filter with ultra-wide stopband and high selectivity. IEEE Trans Circ Syst II Exp Briefs, 67(3):460-464.

[2]Cao YF, Zhang Y, Zhang XY, 2020. Filtering antennas: from innovative concepts to industrial applications. Front Inform Technol Electron Eng, 21(1):116-127.

[3]Chen CP, Oda J, Kamata K, et al., 2013. An iterative synthesis scheme for wideband filter based on parallel-coupled three-line. IEEE European Microwave Conf, p.889-892.

[4]Chen JX, Zhan Y, Xue Q, 2015. Novel LTCC distributed-element wideband bandpass filter based on the dual-mode stepped-impedance resonator. IEEE Trans Compon Packag Manuf Technol, 5(3):372-380.

[5]Chen JX, Zhan Y, Qin W, et al., 2016. Analysis and design of balanced dielectric resonator bandpass filters. IEEE Trans Microw Theory Techn, 64(5):1476-1483.

[6]Chen X, Yang T, Chi PL, 2021. Arbitrary-order balanced filter with reflectionless characteristics for both common- and differential-mode signals. IEEE Microw Wirel Compon Lett, 31(6):553-556.

[7]Fan MY, Song KJ, Yang L, et al., 2021a. Frequency-reconfigurable input-reflectionless bandpass filter and filtering power divider with constant absolute bandwidth. IEEE Trans Circ Syst II Exp Briefs, 68(7):2424-2428.

[8]Fan MY, Song KJ, Yang L, et al., 2021b. Frequency-tunable constant-absolute-bandwidth single-/dual-passband filters and diplexers with all-port-reflectionless behavior. IEEE Trans Microw Theory Techn, 69(2):1365-1377.

[9]Feng WJ, Che WQ, 2012. Wideband balanced bandpass filter based on three-line coupled structure. Electron Lett, 48(16):1006-1008.

[10]Feng WJ, Che WQ, Shi YR, et al., 2019. Balanced rat-race couplers with wideband common-mode suppression. IEEE Trans Microw Theory Techn, 67(12):4724-4732.

[11]Feng WJ, Pan BS, Zhu HS, et al., 2021. High performance balanced bandpass filters with wideband common mode suppression. IEEE Trans Circ Syst II Exp Briefs, 68(6):1897-1901.

[12]Gómez-García R, Muñoz-Ferreras JM, Psychogiou D, et al., 2018. Balanced symmetrical quasi-reflectionless single-and dual-band bandpass planar filters. IEEE Microw Wirel Compon Lett, 28(9):798-800.

[13]Gómez-García R, Muñoz-Ferreras JM, Psychogiou D, 2019. Symmetrical quasi-absorptive RF bandpass filters. IEEE Trans Microw Theory Techn, 67(4):1472-1482.

[14]Guilabert A, Morgan MA, Boyd TA, 2019. Reflectionless filters for generalized elliptic transmission functions. IEEE Trans Circ Syst I Reg Papers, 66(12):4606-4618.

[15]Han Y, Chang YM, Che WQ, 2022. Frequency-selective rasorbers: a view of frequency-selective rasorbers and their application in reducing the radar cross sections of antennas. IEEE Microw Mag, 23(2):86-98.

[16]Kou N, Yu SX, Ding Z, et al., 2022. Monopulse transmitarray antenna fed by aperture-coupled microstrip structure. Front Inform Technol Electron Eng, 23(3):502-510.

[17]Lee B, Lee JH, Lee G, et al., 2022. All-port-reflectionless narrowband filtering power divider topology with generic equations. IEEE Trans Circ Syst I Reg Papers, 69(4):1417-1426.

[18]Lee J, Lee JH, Barker NS, 2021. Rigorous design of input-reflectionless filter with Chebyshev response and exact approach to increase reflectionless range. IEEE Trans Microw Theory Techn, 69(10):4460-4475.

[19]Li HY, Xu JX, Zhang XY, 2019. Substrate integrated waveguide filtering rat-race coupler based on orthogonal degenerate modes. IEEE Trans Microw Theory Techn, 67(1):‍140-150.

[20]Li YC, Wu DS, Xue Q, et al., 2020. Miniaturized single-ended and balanced dual-band diplexers using dielectric resonators. IEEE Trans Microw Theory Techn, 68(10):4257-4266.

[21]Lin TY, Wu TL, 2020. Balanced bandpass filter with common-mode reflectionless feature by terminated coupled lines. IEEE Trans Electromagn Compat, 62(4):1090-1097.

[22]Lin TY, Huang YC, Wu TL, 2019. Novel absorptive balanced bandpass filters using resistive loaded transmission lines. IEEE Trans Compon Packag Manuf Technol, 9(4):745-753.

[23]Morgan MA, Boyd TA, 2015. Reflectionless filter structures. IEEE Trans Microw Theory Techn, 63(4):1263-1271.

[24]Morgan MA, Groves WM, Boyd TA, 2019. Reflectionless filter topologies supporting arbitrary low-pass ladder prototypes. IEEE Trans Circ Syst I Reg Papers, 66(2):594-604.

[25]Pozar DM, 2012. Microwave Engineering (4th Ed.). New York, USA, p.188-190.

[26]Shi J, Xu K, Zhang W, et al., 2016. An approach to 1-to-2n way microstrip balanced power divider. IEEE Trans Microw Theory Techn, 64(12):4222-4231.

[27]Song KJ, Yao JC, Chen YX, et al., 2020. Balanced diplexer based on substrate integrated waveguide dual-mode resonator. IEEE Trans Microw Theory Techn, 68(12):5279-5287.

[28]Wang XY, Tang SC, Chen JX, 2022. Differential-fed pattern-reconfigurable dielectric patch antenna and array with low cross-polarization. IEEE Trans Antenn Propag, 70(5):3870-3875.

[29]Wu DS, Li YC, Xue Q, et al., 2022. Balanced dielectric resonator filters with multiple reconfigurable passbands. IEEE Trans Microw Theory Techn, 70(1):180-189.

[30]Wu XH, Li YS, Liu XG, 2020. High-order dual-port quasi-absorptive microstrip coupled-line bandpass filters. IEEE Trans Microw Theory Techn, 68(4):1462-1475.

[31]Xu KD, Bai YC, Ren X, et al., 2019. Broadband filtering power dividers using simple three-line coupled structures. IEEE Trans Compon Packag Manuf Technol, 9(6):1103-1110.

[32]Xu KD, Lu S, Guo YJ, et al., 2022. Quasi-reflectionless filters using simple coupled line and T-shaped microstrip structures. IEEE J Radio Freq Identif, 6(1):54-63.

[33]Yamamoto S, Azakami T, Itakura K, 1966. Coupled strip transmission line with three center conductors. IEEE Trans Microw Theory Techn, 14(10):446-461.

[34]Yang L, Gómez-García R, Fan MY, 2020. Input-reflectionless balanced wideband bandpass filter using multilayered vertical transitions. IEEE Asia-Pacific Microwave Conf, p.443-449.

[35]Yu W, Xu L, Zhang XY, et al., 2022. Dual-band dual-mode dielectric resonator filtering power divider with flexible output phase difference and power split ratio. IEEE Trans Microw Theory Techn, 70(1):190-199.

[36]Zhang WW, Wu YL, Liu YA, et al., 2017. Planar wideband differential-mode bandpass filter with common-mode noise absorption. IEEE Microw Wirel Compon Lett, 27(5):458-460.

[37]Zhang YF, Wu YL, Wang WM, et al., 2022. High-performance common- and differential-mode reflectionless balanced band-pass filter using coupled ring resonator. IEEE Trans Circ Syst II Exp Briefs, 69(3):974-978.

[38]Zhang ZQ, Zhang B, Li DT, et al., 2021. A mechanical reliability study of 3-dB waveguide hybrid couplers in submillimeter and terahertz bands. Front Inform Technol Electron Eng, 22(8):1104-1113.

[39]Zhou WJ, Chen JX, 2017. High-selectivity tunable balanced bandpass filter with constant absolute bandwidth. IEEE Trans Circ Syst II Exp Briefs, 64(8):917-921.

[40]Zhu Y, Song KJ, Fan MY, et al., 2020. Wideband balanced bandpass filter with common-mode noise absorption using double-sided parallel-strip line. IEEE Microw Wirel Compon Lett, 30(4):359-362.

[41]Zhu YH, Cai J, Chen JX, 2022. Quasi-reflectionless double-sided parallel-strip line bandpass filter with enhanced selectivity. IEEE Trans Circ Syst II Exp Briefs, 69(2):‍339-343.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE