Full Text:  <1514>

CLC number: U491; TP181

On-line Access: 2022-12-14

Received: 2022-07-28

Revision Accepted: 2022-12-17

Crosschecked: 2022-10-06

Cited: 0

Clicked: 1073

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Fei-Yue WANG

https://orcid.org/0000-0001-9185-3989

Xingyuan DAI

https://orcid.org/0000-0001-7517-5049

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Image-based traffic signal control via world models


Author(s):  Xingyuan DAI, Chen ZHAO, Xiao WANG, Yisheng LV, Yilun LIN, Fei-Yue WANG

Affiliation(s):  The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; more

Corresponding email(s):  feiyue.wang@ia.ac.cn

Key Words:  Traffic signal control; Traffic prediction; Traffic world model; Reinforcement learning


Share this article to: More <<< Previous Paper|Next Paper >>>

Xingyuan DAI, Chen ZHAO, Xiao WANG, Yisheng LV, Yilun LIN, Fei-Yue WANG. Image-based traffic signal control via world models[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2200323

@article{title="Image-based traffic signal control via world models",
author="Xingyuan DAI, Chen ZHAO, Xiao WANG, Yisheng LV, Yilun LIN, Fei-Yue WANG",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2200323"
}

%0 Journal Article
%T Image-based traffic signal control via world models
%A Xingyuan DAI
%A Chen ZHAO
%A Xiao WANG
%A Yisheng LV
%A Yilun LIN
%A Fei-Yue WANG
%J Frontiers of Information Technology & Electronic Engineering
%P 1795-1813
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2200323"

TY - JOUR
T1 - Image-based traffic signal control via world models
A1 - Xingyuan DAI
A1 - Chen ZHAO
A1 - Xiao WANG
A1 - Yisheng LV
A1 - Yilun LIN
A1 - Fei-Yue WANG
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 1795
EP - 1813
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2200323"


Abstract: 
Traffic signal control is shifting from passive control to proactive control, which enables the controller to direct current traffic flow to reach its expected destinations. To this end, an effective prediction model is needed for signal controllers. What to predict, how to predict, and how to leverage the prediction for control policy optimization are critical problems for proactive traffic signal control. In this paper, we use an image that contains vehicle positions to describe intersection traffic states. Then, inspired by a model-based reinforcement learning method, DreamerV2, we introduce a novel learning-based traffic world model. The traffic world model that describes traffic dynamics in image form is used as an abstract alternative to the traffic environment to generate multi-step planning data for control policy optimization. In the execution phase, the optimized traffic controller directly outputs actions in real time based on abstract representations of traffic states, and the world model can also predict the impact of different control behaviors on future traffic conditions. Experimental results indicate that the traffic world model enables the optimized real-time control policy to outperform common baselines, and the model achieves accurate image-based prediction, showing promising applications in futuristic traffic signal control.

基于世界模型与图像表示的交通信号控制

戴星原1,2,赵宸1,2,王晓3,吕宜生1,2,林懿伦4,王飞跃1,2
1中国科学院自动化研究所复杂系统管理与控制国家重点实验室,中国北京市,100190
2中国科学院大学人工智能学院,中国北京市,100049
3安徽大学人工智能学院,中国合肥市,230039
4上海人工智能实验室,中国上海市,200232
摘要:交通信号控制正从被动控制过渡到主动控制,以引导当前交通流按预期状态运行。一个有效的预测模型对主动交通信号控制至关重要;其中预测什么交通状态,如何高精度预测,以及如何利用预测优化控制策略是主动交通信号控制研究的关键问题。本文使用车辆位置图像描述路口交通状态,同时受基于模型的强化学习方法DreamerV2的启发,引入基于学习的交通世界模型。该世界模型以图像序列描述交通动态,并作为交通环境的抽象替代以生成多步预测样本用于控制策略优化。在执行阶段,优化后的交通信号控制器根据交通状态的抽象表示直接实时输出控制指令,同时世界模型能够预测不同控制行为对未来交通状态的影响。实验结果表明,基于交通世界模型优化的控制策略的性能优于一般基准,并且世界模型实现了基于图像的高精度预测;这些结果显示了世界模型在未来交通信号控制中的应用前景。

关键词组:交通信号控制;交通预测;交通世界模型;强化学习

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Abdoos M, Bazzan ALC, 2021. Hierarchical traffic signal optimization using reinforcement learning and traffic prediction with long-short term memory. Expert Syst Appl, 171:114580.

[2]Bertsekas D, 2021. Multiagent reinforcement learning: rollout and policy iteration. IEEE/CAA J Autom Sin, 8(2):249-272.

[3]Dai XY, Fu R, Zhao EM, et al., 2019. DeepTrend 2.0: a light-weighted multi-scale traffic prediction model using detrending. Transp Res Part C Emerg Technol, 103:142-157.

[4]Guo QQ, Li L, Ban XG, 2019. Urban traffic signal control with connected and automated vehicles: a survey. Transp Res Part C Emerg Technol, 101:313-334.

[5]Hafner D, Lillicrap T, Fischer I, et al., 2019. Learning latent dynamics for planning from pixels. Proc 36th Int Conf on Machine Learning, p.2555-2565.

[6]Hafner D, Lillicrap TP, Norouzi M, et al., 2022. Mastering Atari with discrete world models. https://arxiv.org/abs/2010.02193

[7]Hao ZZ, Boel R, Li ZW, 2018. Model based urban traffic control, part I: local model and local model predictive controllers. Transp Res Part C Emerg Technol, 97:61-81.

[8]Jin JC, Guo HF, Xu J, et al., 2021. An end-to-end recommendation system for urban traffic controls and management under a parallel learning framework. IEEE Trans Intell Transp Syst, 22(3):1616-1626.

[9]Kim D, Jeong O, 2019. Cooperative traffic signal control with traffic flow prediction in multi-intersection. Sensors, 20(1):137.

[10]Li L, Lv YS, Wang FY, 2016. Traffic signal timing via deep reinforcement learning. IEEE/CAA J Autom Sin, 3(3):247-254.

[11]Li L, Lin YL, Zheng NN, et al., 2017. Parallel learning: a perspective and a framework. IEEE/CAA J Autom Sin, 4(3):389-395.

[12]Li ZS, Xiong G, Tian YL, et al., 2022. A multi-stream feature fusion approach for traffic prediction. IEEE Trans Intell Transp Syst, 23(2):1456-1466.

[13]Liang XY, Du XS, Wang GL, et al., 2019. A deep reinforcement learning network for traffic light cycle control. IEEE Trans Veh Technol, 68(2):1243-1253.

[14]Liu CH, Zhu F, Liu Q, et al., 2021. Hierarchical reinforcement learning with automatic sub-goal identification. IEEE/CAA J Autom Sin, 8(10):1686-1696.

[15]Lopez PA, Behrisch M, Bieker-Walz L, et al., 2018. Microscopic traffic simulation using SUMO. Proc 21st IEEE Int Conf on Intelligent Transportation Systems, p.2575-2582.

[16]Lv YS, Duan YJ, Kang WW, et al., 2014. Traffic flow prediction with big data: a deep learning approach. IEEE Trans Intell Transp Syst, 16(2):865-873.

[17]Mao F, Li ZH, Li L, 2022. A comparison of deep reinforcement learning models for isolated traffic signal control. IEEE Intell Transp Syst Mag, early access.

[18]Mei ZY, Tan Z, Zhang W, et al., 2019. Simulation analysis of traffic signal control and transit signal priority strategies under arterial coordination conditions. Simulation, 95(1):51-64.

[19]Mnih V, Kavukcuoglu K, Silver D, et al., 2015. Human-level control through deep reinforcement learning. Nature, 518(7540):529-533.

[20]Newell GF, 1969. Properties of vehicle-actuated signals: I. one-way streets. Transp Sci, 3(1):30-52.

[21]Nie J, Yan J, Yin HL, et al., 2021. A multimodality fusion deep neural network and safety test strategy for intelligent vehicles. IEEE Trans Intell Veh, 6(2):310-322.

[22]Seng D, Lv FS, Liang ZY, et al., 2021. Forecasting traffic flows in irregular regions with multi-graph convolutional network and gated recurrent unit. Front Inform Technol Electron Eng, 22(9):1179-1193.

[23]Sutton RS, Barto AG, 2018. Reinforcement Learning: an Introduction (2nd Ed.). The MIT Press, Cambridge, USA.

[24]Varaiya P, 2013. Max pressure control of a network of signalized intersections. Transp Res Part C Emerg Technol, 36:177-195.

[25]Wang FY, 2010. Parallel control and management for intelligent transportation systems: concepts, architectures, and applications. IEEE Trans Intell Transp Syst, 11(3):630-638.

[26]Wang HN, Liu N, Zhang YY, et al., 2020. Deep reinforcement learning: a survey. Front Inform Technol Electron Eng, 21(12):1726-1744.

[27]Wang J, Li R, Wang J, et al., 2020. Artificial intelligence and wireless communications. Front Inform Technol Electron Eng, 21(10):1413-1425.

[28]Webster FV, 1958. Traffic Signal Settings. Technical Report No. 39, Road Research Laboratory, UK.

[29]Wei H, Xu N, Zhang HC, et al., 2019a. CoLight: learning network-level cooperation for traffic signal control. Proc 28th ACM Int Conf on Information and Knowledge Management, p.1913-1922.

[30]Wei H, Chen CC, Zheng GJ, et al., 2019b. PressLight: learning max pressure control to coordinate traffic signals in arterial network. Proc 25th ACM SIGKDD Int Conf on Knowledge Discovery & Data Mining, p.1290-1298.

[31]Wiering M, 2000. Multi-agent reinforcement learning for traffic light control. Proc 17th Int Conf on Machine Learning, p.1151-1158.

[32]Xiao Y, Codevilla F, Gurram A, et al., 2022. Multimodal end-to-end autonomous driving. IEEE Trans Intell Transp Syst, 23(1):537-547.

[33]Xiong G, Dong XS, Lu H, et al., 2020. Research progress of parallel control and management. IEEE/CAA J Autom Sin, 7(2):355-367.

[34]Ye BL, Wu WM, Ruan KY, et al., 2019. A survey of model predictive control methods for traffic signal control. IEEE/CAA J Autom Sin, 6(3):623-640.

[35]Yu ZX, Liang SX, Wei L, et al., 2020. MaCAR: urban traffic light control via active multi-agent communication and action rectification. Proc 29th Int Joint Conf on Artificial Intelligence, p.2491-2497.

[36]Zhang HC, Kafouros M, Yu Y, 2020. PlanLight: learning to optimize traffic signal control with planning and iterative policy improvement. IEEE Access, 8:219244-219255.

[37]Zhang KQ, Yang ZR, Basar T, 2021. Decentralized multi-agent reinforcement learning with networked agents: recent advances. Front Inform Technol Electron Eng, 22(6):802-814.

[38]Zhao YF, Gao H, Wang S, et al., 2017. A novel approach for traffic signal control: a recommendation perspective. IEEE Intell Transp Syst Mag, 9(3):127-135.

[39]Zhu FH, Lv YS, Chen YY, et al., 2020. Parallel transportation systems: toward IoT-enabled smart urban traffic control and management. IEEE Trans Intell Transp Syst, 21(10):4063-4071.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE