Full Text:  <485>

CLC number: 

On-line Access: 2024-08-27

Received: 2023-10-17

Revision Accepted: 2024-05-08

Crosschecked: 0000-00-00

Cited: 0

Clicked: 1134

Citations:  Bibtex RefMan EndNote GB/T7714

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Reinforcement learning-based privacy-preserving consensus tracking control of nonstrict-feedback discrete-time multi-agent systems


Author(s):  Yang YANG, Fanming HUANG, Dong YUE

Affiliation(s):  College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; more

Corresponding email(s):  yyang@njupt.edu.cn, medongy@vip.163.com

Key Words:  Multi-agent systems; Consensus tracking; Preserve privacy; Reinforcement learning


Share this article to: More <<< Previous Paper|Next Paper >>>

Yang YANG, Fanming HUANG, Dong YUE. Reinforcement learning-based privacy-preserving consensus tracking control of nonstrict-feedback discrete-time multi-agent systems[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300532

@article{title="Reinforcement learning-based privacy-preserving consensus tracking control of nonstrict-feedback discrete-time multi-agent systems",
author="Yang YANG, Fanming HUANG, Dong YUE",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2300532"
}

%0 Journal Article
%T Reinforcement learning-based privacy-preserving consensus tracking control of nonstrict-feedback discrete-time multi-agent systems
%A Yang YANG
%A Fanming HUANG
%A Dong YUE
%J Frontiers of Information Technology & Electronic Engineering
%P
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2300532"

TY - JOUR
T1 - Reinforcement learning-based privacy-preserving consensus tracking control of nonstrict-feedback discrete-time multi-agent systems
A1 - Yang YANG
A1 - Fanming HUANG
A1 - Dong YUE
J0 - Frontiers of Information Technology & Electronic Engineering
SP -
EP -
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2300532"


Abstract: 
This paper investigates a privacy-preserving consensus tracking problem for a class of nonstrict-feedback discrete-time multi-agent systems (MASs). An improved Liu cryptosystem is developed to alleviate the errors between encryption and decryption on the plaintext, which ensures satisfactory recovery of the plaintext information. A reinforcement learning (RL) technique is then employed to compensate for unknown dynamics and errors between true signals and decrypted ones. Based on the backstepping and graph theory, a RL-based privacy-preserving consensus tracking control strategy is further designed. By virtue of graph theory and Lyapunov stability theory, it is shown that the consensus tracking errors and all signals in the MAS are ultimately bounded. Finally, simulation examples are presented for verification of the effectiveness of the control strategy.

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE