CLC number: TP39
On-line Access: 2024-12-26
Received: 2023-09-21
Revision Accepted: 2024-12-26
Crosschecked: 2024-02-02
Cited: 0
Clicked: 989
Yushan LIU, Yang CHEN, Jiayun ZHANG, Yu XIAO, Xin WANG. Toward an accurate mobility trajectory recovery using contrastive learning[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300647 @article{title="Toward an accurate mobility trajectory recovery using contrastive learning", %0 Journal Article TY - JOUR
基于对比学习的移动轨迹准确恢复1复旦大学计算机科学技术学院上海市智能信息处理重点实验室,中国上海市,200433 2阿尔托大学信息与通信工程学院,芬兰埃斯波,FI-02150 摘要:在城市计算应用中,用户轨迹数据是用户移动行为分析的基础数据源。然而,由于这些用户轨迹数据部分是从基于位置的服务中收集的,在时间上常常具有稀疏性和不规则性。为提高基于位置数据服务的性能,以较高时空分辨率对用户轨迹数据进行恢复,对无记录时刻的用户地点进行预测是非常重要的。本文提出一个新的轨迹恢复模型,旨在捕捉多级移动模式并增强轨迹恢复的稳健性。该模型具有一个两阶段位置编码器,用于捕捉集体和个体移动模式,并利用基于图神经网络的网络与注意力机制捕捉单个轨迹内部和跨多个用户轨迹的位置转移模式。此外,采用一个轨迹级对比学习任务以提高模型的稳健性。在3个具有代表性的真实数据集上的大量实验结果表明,该模型在轨迹恢复精度方面始终具有优越的性能。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Chandio AA, Tziritas N, Zhang F, et al., 2016. Towards adaptable and tunable cloud-based map-matching strategy for GPS trajectories. Front Inform Technol Electron Eng, 17(12):1305-1319. [2]Chen GS, Viana AC, Fiore M, et al., 2019. Complete trajectory reconstruction from sparse mobile phone data. EPJ Data Sci, 8(1):30. [3]Chen T, Kornblith S, Norouzi M, et al., 2020. A simple framework for contrastive learning of visual representations. Proc 37th Int Conf on Machine Learning, p.1597-1607. [4]Chen XL, He KM, 2021. Exploring simple Siamese representation learning. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.15745-15753. [5]Cho E, Myers SA, Leskovec J, 2011. Friendship and mobility: user movement in location-based social networks. Proc 17th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining, p.1082-1090. [6]Chondrogiannis T, Bornholdt J, Bouros P, et al., 2022. History oblivious route recovery on road networks. Proc 30th Int Conf on Advances in Geographic Information Systems, Article 44. [7]Chung J, Gülçehre Ç, Cho K, et al., 2014. Empirical evaluation of gated recurrent neural networks on sequence modeling. https://arxiv.org/abs/1412.3555 [8]Deng LW, Zhao Y, Fu ZD, et al., 2022. Efficient trajectory similarity computation with contrastive learning. Proc 31st ACM Int Conf on Information & Knowledge Management, p.365-374. [9]Dhont M, Tsiporkova E, González-Deleito N, 2022. Mining of spatiotemporal trajectory profiles derived from mobility data. IEEE Int Conf on Data Mining Workshops, p.1-9. [10]Fang ZH, Yang Y, Yang G, et al., 2021. CellSense: human mobility recovery via cellular network data enhancement. Proc ACM Interact Mob Wearab Ubiquit Technol, 5(3):100. [11]Fang ZQ, Du YT, Zhu XJ, et al., 2022. Spatio-temporal trajectory similarity learning in road networks. Proc 28th ACM SIGKDD Conf on Knowledge Discovery and Data Mining, p.347-356. [12]Feng J, Li Y, Zhang C, et al., 2018. DeepMove: predicting human mobility with attentional recurrent networks. Proc World Wide Web Conf, p.1459-1468. [13]Gao Q, Wang XH, Liu CR, et al., 2023. Open anomalous trajectory recognition via probabilistic metric learning. Proc 32nd Int Joint Conf on Artificial Intelligence, p.2095-2103. [14]González MC, Hidalgo CA, Barabási AL, 2008. Understanding individual human mobility patterns. https://arxiv.org/abs/0806.1256 [15]He KM, Fan HQ, Wu YX, et al., 2020. Momentum contrast for unsupervised visual representation learning. Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.9726-9735. [16]Hristova D, Williams MJ, Musolesi M, et al., 2016. Measuring urban social diversity using interconnected geo-social networks. Proc 25th Int Conf on World Wide Web, p.21-30. [17]Li L, Li YB, Li ZH, 2013. Efficient missing data imputing for traffic flow by considering temporal and spatial dependence. Transp Res Part C Emerg Technol, 34:108-120. [18]Li XC, Zhao KQ, Cong G, et al., 2018. Deep representation learning for trajectory similarity computation. Proc IEEE 34th Int Conf on Data Engineering, p.617-628. [19]Li XC, Cong G, Cheng Y, 2020. Spatial transition learning on road networks with deep probabilistic models. Proc IEEE 36th Int Conf on Data Engineering, p.349-360. [20]Li YJ, Tarlow D, Brockschmidt M, et al., 2016. Gated graph sequence neural networks. Proc 4th Int Conf on Learning Representations. [21]Lin Y, Wan HY, Guo SN, et al., 2021. Pre-training context and time aware location embeddings from spatial-temporal trajectories for user next location prediction. Proc 35th AAAI Conf on Artificial Intelligence, p.4241-4248. [22]Liu Q, Wu S, Wang L, et al., 2016. Predicting the next location: a recurrent model with spatial and temporal contexts. Proc 30th AAAI Conf on Artificial Intelligence, p.194-200. [23]Luo YH, Cai XR, Zhang Y, et al., 2018. Multivariate time series imputation with generative adversarial networks. Proc 32nd Int Conf on Neural Information Processing Systems, p.1603-1614. [24]Noulas A, Shaw B, Lambiotte R, et al., 2015. Topological properties and temporal dynamics of place networks in urban environments. Proc 24th Int Conf on World Wide Web, p.431-441. [25]Park D, Kang J, Song H, et al., 2022. Multi-view POI-level cellular trajectory reconstruction for digital contact tracing of infectious diseases. Proc IEEE Int Conf on Data Mining, p.1137-1142. [26]Ren HM, Ruan SJ, Li YH, et al., 2021. MTrajRec: map-constrained trajectory recovery via Seq2Seq multi-task learning. Proc 27th ACM SIGKDD Conf on Knowledge Discovery & Data Mining, p.1410-1419. [27]Salakhutdinov R, Mnih A, 2007. Probabilistic matrix factorization. Proc 20th Int Conf on Neural Information Processing Systems, p.1257-1264. [28]Seng D, Lv FS, Liang ZY, et al., 2021. Forecasting traffic flows in irregular regions with multi-graph convolutional network and gated recurrent unit. Front Inform Technol Electron Eng, 22(9):1179-1193. [29]Si JJ, Yang J, Xiang Y, et al., 2024. TrajBERT: BERT-based trajectory recovery with spatial-temporal refinement for implicit sparse trajectories. IEEE Trans Mob Comput, 23(5):4849-4860. [30]Sun H, Yang CJ, Deng LW, et al., 2021. PeriodicMove: shift-aware human mobility recovery with graph neural network. Proc 30th ACM Int Conf on Information & Knowledge Management, p.1734-1743. [31]Vaswani A, Shazeer N, Parmar N, et al., 2017. Attention is all you need. Proc 31st Int Conf on Neural Information Processing Systems, p.6000-6010. [32]Wang YY, Jiang WH, Pu SL, et al., 2020. Learning embeddings of a heterogeneous behavior network for potential behavior prediction. Front Inform Technol Electron Eng, 21(3):422-435. [33]Wei LY, Zheng Y, Peng WC, 2012. Constructing popular routes from uncertain trajectories. Proc 18th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining, p.195-203. [34]Wu H, Mao JY, Sun WW, et al., 2016. Probabilistic robust route recovery with spatio-temporal dynamics. Proc 22nd ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining, p.1915-1924. [35]Wu S, Tang YY, Zhu YQ, et al., 2019. Session-based recommendation with graph neural networks. Proc 33rd AAAI Conf on Artificial Intelligence, p.346-353. [36]Xi DB, Zhuang FZ, Liu YC, et al., 2019. Modelling of bi-directional spatio-temporal dependence and users’ dynamic preferences for missing POI check-in identification. Proc 33rd AAAI Conf on Artificial Intelligence, p.5458-5465. [37]Xia T, Qi YH, Feng J, et al., 2021. AttnMove: history enhanced trajectory recovery via attentional network. Proc 35th AAAI Conf on Artificial Intelligence, p.4494-4502. [38]Xu Y, Xu JJ, Zhao J, et al., 2022. MetaPTP: an adaptive meta-optimized model for personalized spatial trajectory prediction. Proc 28th ACM SIGKDD Conf on Knowledge Discovery and Data Mining, p.2151-2159. [39]Yang DQ, Zhang DQ, Zheng VW, et al., 2015. Modeling user activity preference by leveraging user spatial temporal characteristics in LBSNs. IEEE Trans Syst Man Cybern Syst, 45(1):129-142. [40]Yang S, Liu JM, Zhao KQ, 2022. GETNext: trajectory flow map enhanced Transformer for next POI recommendation. Proc 45th Int ACM SIGIR Conf on Research and Development in Information Retrieval, p.1144-1153. [41]Zhang WY, Xia DW, Chang GY, et al., 2022. APFD: an effective approach to taxi route recommendation with mobile trajectory big data. Front Inform Technol Electron Eng, 23(10):1494-1510. [42]Zhao J, Xu JJ, Zhou R, et al., 2018. On prediction of user destination by sub-trajectory understanding: a deep learning based approach. Proc 27th ACM Int Conf on Information and Knowledge Management, p.1413-1422. [43]Zheng Y, Li QN, Chen YK, et al., 2008. Understanding mobility based on GPS data. Proc 10th Int Conf on Ubiquitous Computing, p.312-321. [44]Zheng Y, Zhang LZ, Xie X, et al., 2009. Mining interesting locations and travel sequences from GPS trajectories. Proc 18th Int Conf on World Wide Web, p.791-800. [45]Zheng Y, Xie X, Ma WY, 2010. GeoLife: a collaborative social networking service among user, location and trajectory. IEEE Data Eng Bull, 33(2):32-39. [46]Zhou F, Wang PY, Xu X, et al., 2022. Contrastive trajectory learning for tour recommendation. ACM Trans Intell Syst Technol, 13(1):4. Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>