Full Text:  <1023>

Suppl. Mater.: 

Summary:  <81>

CLC number: TN823

On-line Access: 2025-05-06

Received: 2023-10-31

Revision Accepted: 2024-03-20

Crosschecked: 2025-05-06

Cited: 0

Clicked: 1270

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Xiaojun ZOU

https://orcid.org/0000-0003-3883-7255

Binfeng ZONG

https://orcid.org/0000-0003-3399-5756

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


A parasitic coupling network concept for mutual coupling utilization in wideband multielement antenna arrays


Author(s):  Xiaojun ZOU, Guangming WANG, Yawei WANG, Wei SONG, Hang ZHU, Ming TAN, Xuguang XU, Guoqin KANG, Binfeng ZONG

Affiliation(s):  College of Information and Communication, National University of Defense Technology, Wuhan 430035, China; more

Corresponding email(s):  zouxj0606@163.com, zongbinfeng@163.com

Key Words:  Active reflection coefficient (ARC); Antenna array; Parasitic coupling network (PCN); Scanning array; Wideband


Share this article to: More <<< Previous Paper|

Xiaojun ZOU, Guangming WANG, Yawei WANG, Wei SONG, Hang ZHU, Ming TAN, Xuguang XU, Guoqin KANG, Binfeng ZONG. A parasitic coupling network concept for mutual coupling utilization in wideband multielement antenna arrays[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2300742

@article{title="A parasitic coupling network concept for mutual coupling utilization in wideband multielement antenna arrays",
author="Xiaojun ZOU, Guangming WANG, Yawei WANG, Wei SONG, Hang ZHU, Ming TAN, Xuguang XU, Guoqin KANG, Binfeng ZONG",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2300742"
}

%0 Journal Article
%T A parasitic coupling network concept for mutual coupling utilization in wideband multielement antenna arrays
%A Xiaojun ZOU
%A Guangming WANG
%A Yawei WANG
%A Wei SONG
%A Hang ZHU
%A Ming TAN
%A Xuguang XU
%A Guoqin KANG
%A Binfeng ZONG
%J Frontiers of Information Technology & Electronic Engineering
%P 652-670
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2300742"

TY - JOUR
T1 - A parasitic coupling network concept for mutual coupling utilization in wideband multielement antenna arrays
A1 - Xiaojun ZOU
A1 - Guangming WANG
A1 - Yawei WANG
A1 - Wei SONG
A1 - Hang ZHU
A1 - Ming TAN
A1 - Xuguang XU
A1 - Guoqin KANG
A1 - Binfeng ZONG
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 652
EP - 670
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2300742"


Abstract: 
A novel approach to widening the active reflection coefficient (ARC) bandwidth of an antenna array, employing a parasitic coupling network (PCN), is investigated in this article. Different from traditional tightly coupled arrays adopting space structures for enhancing the coupling in balanced-excitation antennas, a PCN derived from rigorous formulas is employed in the feeding lines of unbalanced-excitation ones. Based on network analysis, the mutual coupling utilization condition for an (M×N)‍-‍element antenna array is initially deduced, and the PCN is implemented. Then, the PCNs are realized by introducing a parasitic element and a coupling network between the two-element H-plane and E-plane dual-layer coupled microstrip antenna arrays, resulting in 10.9% and 30.8% bandwidth enhancements compared with the original arrays, respectively. Moreover, the PCNs are further expanded to multielement antenna arrays, including three- and five-element one-dimensional and 8×2 two-dimensional arrays, exhibiting approximately 40% overlapped ARC bandwidths with normal radiation patterns, steady gains, and applicable scanning characteristics. The results indicate its potential application in large-scale wideband arrays.

一种用于宽带多元天线阵耦合利用的寄生耦合网络

邹晓鋆1,王光明2,王亚伟2,宋伟1,朱航1,谭铭1,许旭光1,康国钦1,宗彬锋2
1国防科技大学信息通信学院,中国武汉市,430035
2空军工程大学防空反导学院,中国西安市,710051
摘要:本文研究了一种利用寄生耦合网络(PCN)来拓宽天线阵有源反射系数(ARC)带宽的新方法。与传统紧耦合阵列采用空间结构来增强平衡馈电天线间耦合不同的是,采用严格公式推导的PCN被加载至非平衡馈电天线的馈线中。首先在网络分析的基础上推导了M×N元天线阵的耦合利用条件并实现了PCN。然后,通过在二元H面和E面双层耦合微带天线阵之间引入寄生单元和耦合网络实现了PCN;与原阵列相比,带宽分别提高10.9%和30.8%。此外,PCN被进一步扩展到多元天线阵,包括三元和五元一维阵列以及8×2二维阵列;这3款天线阵都具有40%左右的共用ARC带宽,且有正向辐射方向图、稳定增益和适宜的扫描特性。结果表明PCN在大规模宽带阵列中具有潜在应用前景。

关键词组:有源反射系数(ARC);天线阵;寄生耦合网络(PCN);扫描阵;宽带

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Allen JL, Diamond BL, 1966. Mutual Coupling in Array Antennas. Technical Report No. 424 (ESD-TR-66-443), LaboratoryLincoln, MIT, Lexington, MA, USA.

[2]Alwan EA, Sertel K, Volakis JL, 2012. A simple equivalent circuit model for ultrawideband coupled arrays. IEEE Antenn Wirel Propag Lett, 11:117-120.

[3]Bait-Suwailam MM, Boybay MS, Ramahi OM, 2010. Electromagnetic coupling reduction in high-profile monopole antennas using single-negative magnetic metamaterials for MIMO applications. IEEE Trans Antenn Propag, 58(9):2894-2902.

[4]Chen YK, Zhou WY, Yang SW, 2021. Design of a low-profile and low scattering wideband planar phased antenna array. IEEE Trans Antenn Propag, 69(12):8973-8978.

[5]Ghadimi A, Nayyeri V, Khanjarian M, et al., 2020. A systematic approach for mutual coupling reduction between microstrip antennas using pixelization and binary optimization. IEEE Antenn Wirel Propag Lett, 19(12):2048-2052.

[6]Guo JY, Liu F, Jing GD, et al., 2020. Mutual coupling reduction of multiple antenna systems. Front Inform Technol Electron Eng, 21(3):366-376.

[7]Holland SS, Vouvakis MN, 2012. The planar ultrawideband modular antenna (PUMA) array. IEEE Trans Antenn Propag, 60(1):130-140.

[8]Kahn W, 1969. Active reflection coefficient and element efficiency in arbitrary antenna arrays. IEEE Trans Antenn Propag, 17(5):653-654.

[9]Kumar C, Pasha MI, Guha D, 2017. Defected ground structure integrated microstrip array antenna for improved radiation properties. IEEE Antenn Wirel Propag Lett, 16:310-312.

[10]Kumar P, Pathan S, Vincent S, et al., 2023. A compact quad-port UWB MIMO antenna with improved isolation using a novel mesh-like decoupling structure and unique DGS. IEEE Trans Circ Syst II Exp Briefs, 70(3):949-953.

[11]Lau BK, Andersen JB, 2012. Simple and efficient decoupling of compact arrays with parasitic scatterers. IEEE Trans Antenn Propag, 60(2):464-472.

[12]Li M, Jiang LJ, Yeung KL, 2019. Novel and efficient parasitic decoupling network for closely coupled antennas. IEEE Trans Antenn Propag, 67(6):3574-3585.

[13]Li M, Jiang LJ, Yeung KL, 2020. A general and systematic method to design neutralization lines for isolation enhancement in MIMO antenna arrays. IEEE Trans Veh Technol, 69(6):6242-6253.

[14]Li M, Zhang YJ, Wu D, et al., 2022a. Decoupling and matching network for dual-band MIMO antennas. IEEE Trans Antenn Propag, 70(3):1764-1775.

[15]Li M, Zhang YJ, Jiang F, et al., 2022b. Improvement for MIMO systems by increasing antenna isolation and shaping radiation pattern using hybrid network. IEEE Trans Ind Electron, 69(12):13891-13901.

[16]Li WT, Tu HC, He YJ, et al., 2023. A novel wideband tightly coupled dual-polarized reflectarray antenna. IEEE Trans Antenn Propag, 71(6):5422-5427.

[17]Liu F, Guo JY, Zhao LY, et al., 2020. Dual-band metasurface-based decoupling method for two closely packed dual-band antennas. IEEE Trans Antenn Propag, 68(1):552-557.

[18]Munk B, Taylor R, Durharn T, et al., 2003. A low-profile broadband phased array antenna. Proc IEEE Antennas and Propagation Society Int Symp, p.448-451.

[19]Qu SW, Chan CH, Xia MY, et al., 2013. High-efficiency periodic sparse microstrip array based on mutual coupling. IEEE Trans Antenn Propag, 61(4):1963-1970.

[20]Reid EW, Ortiz-Balbuena L, Ghadiri A, et al., 2012. A 324-element Vivaldi antenna array for radio astronomy instrumentation. IEEE Trans Instrum Meas, 61(1):241-250.

[21]Sui J, Wu KL, 2017. A general T-stub circuit for decoupling of two dual-band antennas. IEEE Trans Microw Theory Tech, 65(6):2111-2121.

[22]Wang YW, Yu ZW, 2017. A novel symmetric double-slot structure for antipodal Vivaldi antenna to lower cross-polarization level. IEEE Trans Antenn Propag, 65(10):5599-5604.

[23]Wang ZT, Wu Q, 2023. A novel decoupling feeding network for circularly polarized patch arrays using orthogonal mode decomposition. IEEE Trans Antenn Propag, 71(2):1448-1457.

[24]Wheeler H, 1965. Simple relations derived from a phased-array antenna made of an infinite current sheet. IEEE Trans Antenn Propag, 13(4):506-514.

[25]Wu KL, Wei CN, Mei XD, et al., 2017. Array-antenna decoupling surface. IEEE Trans Antenn Propag, 65(12):6728-6738.

[26]Xia RL, Qu SW, Bai X, et al., 2014. Experimental investigation of wide-angle impedance matching of phased array using overlapped feeding network. IEEE Antenn Wirel Propag Lett, 13:1284-1287.

[27]Zhai GH, Chen ZN, Qing XM, 2016. Mutual coupling reduction of a closely spaced four-element MIMO antenna system using discrete mushrooms. IEEE Trans Microw Theory Tech, 64(10):3060-3067.

[28]Zhang SH, Chen YK, Yang SW, 2023. An extremely wideband tightly coupled dipole array with shared-aperture configuration. IEEE Antenn Wirel Propag Lett, 22(6):1366-1370.

[29]Zhao LY, Yeung LK, Wu KL, 2014. A coupled resonator decoupling network for two-element compact antenna arrays in mobile terminals. IEEE Trans Antenn Propag, 62(5):2767-2776.

[30]Zhu YF, Chen YK, Yang SW, 2021. Cross-band mutual coupling reduction in dual-band base-station antennas with a novel grid frequency selective surface. IEEE Trans Antenn Propag, 69(12):8991-8996.

[31]Zou XJ, Wang GM, Wang YW, et al., 2019. An efficient decoupling network between feeding points for multielement linear arrays. IEEE Trans Antenn Propag, 67(5):3101-3108.

[32]Zou XJ, Wang GM, Kang GQ, et al., 2023. Wideband coupling suppression with neutralization-line-incorporated decoupling network in MIMO arrays. AEU-Int J Electron Commun, 167:154688.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE