Full Text:  <971>

Summary:  <232>

CLC number: TN722

On-line Access: 2025-02-10

Received: 2024-01-29

Revision Accepted: 2024-05-27

Crosschecked: 2025-02-18

Cited: 0

Clicked: 1272

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Jing XIA

https://orcid.org/0000-0001-6255-9297

-   Go to

Article info.
Open peer comments

Frontiers of Information Technology & Electronic Engineering 

Accepted manuscript available online (unedited version)


Design of a wideband symmetric large back-off range Doherty power amplifier based on impedance and phase hybrid optimization


Author(s):  Zhongpeng NI, Jing XIA, Xinyu ZHOU, Wa KONG, Wence ZHANG, Xiaowei ZHU

Affiliation(s):  School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China; more

Corresponding email(s):  jingxia@ujs.edu.cn

Key Words:  Back-off power range; Doherty power amplifier; Fragment-type structure; Impedance–phase hybrid function


Share this article to: More <<< Previous Paper|

Zhongpeng NI, Jing XIA, Xinyu ZHOU, Wa KONG, Wence ZHANG, Xiaowei ZHU. Design of a wideband symmetric large back-off range Doherty power amplifier based on impedance and phase hybrid optimization[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400066

@article{title="Design of a wideband symmetric large back-off range Doherty power amplifier based on impedance and phase hybrid optimization",
author="Zhongpeng NI, Jing XIA, Xinyu ZHOU, Wa KONG, Wence ZHANG, Xiaowei ZHU",
journal="Frontiers of Information Technology & Electronic Engineering",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/FITEE.2400066"
}

%0 Journal Article
%T Design of a wideband symmetric large back-off range Doherty power amplifier based on impedance and phase hybrid optimization
%A Zhongpeng NI
%A Jing XIA
%A Xinyu ZHOU
%A Wa KONG
%A Wence ZHANG
%A Xiaowei ZHU
%J Frontiers of Information Technology & Electronic Engineering
%P 146-156
%@ 2095-9184
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/FITEE.2400066"

TY - JOUR
T1 - Design of a wideband symmetric large back-off range Doherty power amplifier based on impedance and phase hybrid optimization
A1 - Zhongpeng NI
A1 - Jing XIA
A1 - Xinyu ZHOU
A1 - Wa KONG
A1 - Wence ZHANG
A1 - Xiaowei ZHU
J0 - Frontiers of Information Technology & Electronic Engineering
SP - 146
EP - 156
%@ 2095-9184
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/FITEE.2400066"


Abstract: 
The present paper proposes an optimization design method for the Doherty output matching network (OMN) using impedance–phase hybrid objective function constraints, which possesses the capability of enhancing the efficiency consistency of the Doherty power amplifier (DPA) using integrated enhancing reactance (IER) during the back-off power (BOP) range. By calculating the desired reactance for an extended BOP range and combining it with the two-impedance matching method, the S-parameters of the OMN are obtained. Meanwhile, the impedance and phase constraints of the OMN are proposed to narrow the distribution range of the IER. Furthermore, a fragment-type structure is employed in the OMN optimization so as to enhance the flexibility of the circuit optimization design. To validate the proposed method, a 1.7–2.5 GHz symmetric DPA with a large BOP range was designed and fabricated. Measurement results demonstrate that across the entire operating frequency band, the saturated output power is >44 dBm, and the efficiency ranges from 45% to 55% at a 9-dB BOP.

基于阻抗和相位混合优化的宽带对称式高回退Doherty功率放大器设计

倪中鹏1,夏景1,周新宇2,孔娃1,张文策1,朱晓维3
1江苏大学计算机与通信工程学院,中国镇江市,212013
2香港理工大学电子信息工程系,中国香港特别行政区,999077
3东南大学毫米波国家重点实验室,中国南京市,210096
摘要:提出一种基于阻抗-相位混合目标函数约束的Doherty输出匹配网络优化设计方法,该方法能够利用集成增强电抗提高Doherty功率放大器在功率回退时的效率一致性。通过计算扩展功率回退范围所需的电抗,并结合双阻抗匹配方法来获得输出匹配网络设计所需的S参数。同时,该方法对输出匹配网络的阻抗和相位进行约束,以减小集成增强电抗的分布范围。此外,在输出匹配网络优化中采用了网格型结构,以增强电路优化设计的灵活性。为验证所提方法的有效性,设计并制造了一个1.7-2.5 GHz对称式高回退功率放大器。测试结果表明,在整个工作频带内,饱和输出功率高于44 dBm,9-dB回退功率效率为45%-55%。

关键词组:回退功率范围;Doherty功率放大器;片段式结构;阻抗-相位混合函数

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]Akbarpour M, Helaoui M, Ghannouchi FM, 2012. A transformer-less load-modulated (TLLM) architecture for efficient wideband power amplifiers. IEEE Trans Microw Theory Tech, 60(9):2863-2874.

[2]Asbeck P, Popovic Z, 2016. ET comes of age: envelope tracking for higher-efficiency power amplifiers. IEEE Microw Mag, 17(3):16-25.

[3]Chen SC, Wang WW, Xu KW, et al., 2018. A reactance compensated three-device Doherty power amplifier for bandwidth and back-off range extension. Wirel Commun Mob Comput, 2018:8418165.

[4]Choi W, Kang H, Oh H, et al., 2021. Doherty power amplifier based on asymmetric cells with complex combining load. IEEE Trans Microw Theory Tech, 69(4):2336-2344.

[5]Chung A, Rejeb MB, Darwish A, et al., 2018. Frequency doubler based outphasing system for millimeter wave vector signal generation. Proc 15th European Radar Conf, p.449-452.

[6]Cui J, Li PP, Sheng WX, 2023. High linearity U-band power amplifier design: a novel intermodulation point analysis method. Front Inform Technol Electron Eng, 24(1):176-186.

[7]Dai ZJ, Kong SM, Feng W, et al., 2024. Design of wideband asymmetric Doherty power amplifier using a new phase compensation technique. IEEE Trans Circ Syst I Regular Papers, 71(3):1093-1104.

[8]Doherty WH, 1936. A new high efficiency power amplifier for modulated waves. Proc Inst Radio Eng, 24(9):1163-1182.

[9]Fang XH, Cheng KKM, 2014. Extension of high-efficiency range of Doherty amplifier by using complex combining load. IEEE Trans Microw Theory Tech, 62(9):2038-2047.

[10]Guo J, Crupi G, Cai JL, 2022. A broadband asymmetric Doherty power amplifier design based on multiobjective Bayesian optimization: theoretical and experimental validation. IEEE Access, 10:89823-89834.

[11]Karahan EA, Liu Z, Sengupta K, 2023. Deep-learning-based inverse-designed millimeter-wave passives and power amplifiers. IEEE J Sol-State Circ, 58(11):3074-3088.

[12]Kong W, Xia J, Meng F, et al., 2018. A Doherty power amplifier with large back-off power range using integrated enhancing reactance. Wirel Commun Mob Comput, 2018:3968308.

[13]Kong W, Zhong YJ, Xia J, et al., 2024. Optimization design of broadband Doherty PA using fragment-type matching network based on dual-state impedance objective function. IEEE Trans Circ Syst II Express Briefs, 71(4):1809-1813.

[14]Li C, You F, Peng J, et al., 2020. Co-design of matching sub-networks to realize broadband symmetrical Doherty with configurable back-off region. IEEE Trans Circ Syst II Express Briefs, 67(10):1730-1734.

[15]Li M, Li ZQ, Zheng Q, et al., 2022. A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design. Front Inform Technol Electron Eng, 23(2):346-350.

[16]Li MY, Cheng XB, Dai ZJ, et al., 2023. A novel method for extending the output power back-off range of an asymmetrical Doherty power amplifier. Front Inform Technol Electron Eng, 24(3):470-479.

[17]Liu X, Lv GS, Wang DH, et al., 2020. Energy-efficient power amplifiers and linearization techniques for massive MIMO transmitters: a review. Front Inform Technol Electron Eng, 21(1):72-96.

[18]Lyu H, Lovato R, Gowri SP, et al., 2023. Co-design of Doherty power amplifier and post-matching bandpass filter. IEEE Wireless and Microwave Technology Conf, p.65-68.

[19]Nan JC, Wang H, Cong MF, et al., 2021. A broadband Doherty power amplifier with a new load modulation network. IEEE Access, 9:58025-58033.

[20]Özen M, Andersson K, Fager C, 2016. Symmetrical Doherty power amplifier with extended efficiency range. IEEE Trans Microw Theory Tech, 64(4):1273-1284.

[21]Pang JZ, He SB, Huang CY, et al., 2015. A post-matching Doherty power amplifier employing low-order impedance inverters for broadband applications. IEEE Trans Microw Theory Tech, 63(12):4061-4071.

[22]Ren M, Gao RB, Liu S, et al., 2024. Design of wideband Doherty power amplifier using inverse continuous class-F mode. IEEE Trans Circ Syst II Express Briefs, 71(9):4176-4180.

[23]Roychowdhury D, Kitchen J, 2022. Asymmetrical continuous mode Doherty power amplifier using complex combining load impedance. IEEE Texas Symp on Wireless and Microwave Circuits and Systems, p.1-5.

[24]Ruhul Hasin M, Kitchen J, 2019. Exploiting phase for extended efficiency range in symmetrical Doherty power amplifiers. IEEE Trans Microw Theory Tech, 67(8):3455-3463.

[25]Shi WM, He SB, Gideon N, 2017. Extending high-efficiency power range of symmetrical Doherty power amplifiers by taking advantage of peaking stage. IET Microw Antenn Propag, 11(9):1296-1302.

[26]Shi WM, He SB, Zhu XY, et al., 2018. Broadband continuous-mode Doherty power amplifiers with non-infinity peaking impedance. IEEE Trans Microw Theory Tech, 66(2):1034-1046.

[27]Wang H, Nan JC, Cong MF, et al., 2022. A broadband power amplifier with multifrequency impedance matching. IEEE Microw Wirel Compon Lett, 32(11):1339-1342.

[28]Xia J, Yang MS, Guo Y, et al., 2016. A broadband high-efficiency Doherty power amplifier with integrated compensating reactance. IEEE Trans Microw Theory Tech, 64(7):2014-2024.

[29]Xia J, Bian CX, Kong W, et al., 2022. Optimization design of fragment-type filtering matching network for continuous inverse class-F power amplifier. IEICE Electron Express, 19(14):20220043.

[30]Xiao F, Dai ZJ, Pang JZ, et al., 2021. A Doherty power amplifier with extended back-off by using non-infinite peaking impedance and complex combining load. IEEE MTT-S Int Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, p.182-184.

[31]Xu Y, Pang JZ, Wang XY, et al., 2021. Enhancing bandwidth and back-off range of Doherty power amplifier with modified load modulation network. IEEE Trans Microw Theory Tech, 69(4):2291-2303.

[32]Yang ZX, Yao Y, Li MY, et al., 2019. Bandwidth extension of Doherty power amplifier using complex combining load with noninfinity peaking impedance. IEEE Trans Microw Theory Tech, 67(2):765-777.

[33]Yao Y, Dai ZJ, Li MY, 2024. A novel topology with controllable wideband baseband impedance for power amplifiers. Front Inform Technol Electron Eng, 25(2):308-315.

[34]Zhang JR, Zheng SY, Yang N, 2023. An efficient broadband symmetrical Doherty power amplifier with extended back-off range. IEEE Trans Circ Syst II Express Briefs, 70(4):1316-1320.

[35]Zhang QF, Li H, 2007. MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput, 11(6):712-731.

[36]Zhou H, Perez-Cisneros JR, Hesami S, et al., 2022. A generic theory for design of efficient three-stage Doherty power amplifiers. IEEE Trans Microw Theory Tech, 70(2):1242-1253.

[37]Zhou LH, Zhou XY, Chan WS, 2023. A compact and broadband Doherty power amplifier without post-matching network. IEEE Trans Circ Syst II Express Briefs, 70(3):919-923.

[38]Zhou XY, Chan WS, Sharma T, et al., 2022. A Doherty power amplifier with extended high-efficiency range using three-port harmonic injection network. IEEE Trans Circ Syst I Regular Papers, 69(7):2756-2766.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE