CLC number: TN722
On-line Access: 2025-02-10
Received: 2024-01-29
Revision Accepted: 2024-05-27
Crosschecked: 2025-02-18
Cited: 0
Clicked: 1272
Zhongpeng NI, Jing XIA, Xinyu ZHOU, Wa KONG, Wence ZHANG, Xiaowei ZHU. Design of a wideband symmetric large back-off range Doherty power amplifier based on impedance and phase hybrid optimization[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400066 @article{title="Design of a wideband symmetric large back-off range Doherty power amplifier based on impedance and phase hybrid optimization", %0 Journal Article TY - JOUR
基于阻抗和相位混合优化的宽带对称式高回退Doherty功率放大器设计1江苏大学计算机与通信工程学院,中国镇江市,212013 2香港理工大学电子信息工程系,中国香港特别行政区,999077 3东南大学毫米波国家重点实验室,中国南京市,210096 摘要:提出一种基于阻抗-相位混合目标函数约束的Doherty输出匹配网络优化设计方法,该方法能够利用集成增强电抗提高Doherty功率放大器在功率回退时的效率一致性。通过计算扩展功率回退范围所需的电抗,并结合双阻抗匹配方法来获得输出匹配网络设计所需的S参数。同时,该方法对输出匹配网络的阻抗和相位进行约束,以减小集成增强电抗的分布范围。此外,在输出匹配网络优化中采用了网格型结构,以增强电路优化设计的灵活性。为验证所提方法的有效性,设计并制造了一个1.7-2.5 GHz对称式高回退功率放大器。测试结果表明,在整个工作频带内,饱和输出功率高于44 dBm,9-dB回退功率效率为45%-55%。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Akbarpour M, Helaoui M, Ghannouchi FM, 2012. A transformer-less load-modulated (TLLM) architecture for efficient wideband power amplifiers. IEEE Trans Microw Theory Tech, 60(9):2863-2874. ![]() [2]Asbeck P, Popovic Z, 2016. ET comes of age: envelope tracking for higher-efficiency power amplifiers. IEEE Microw Mag, 17(3):16-25. ![]() [3]Chen SC, Wang WW, Xu KW, et al., 2018. A reactance compensated three-device Doherty power amplifier for bandwidth and back-off range extension. Wirel Commun Mob Comput, 2018:8418165. ![]() [4]Choi W, Kang H, Oh H, et al., 2021. Doherty power amplifier based on asymmetric cells with complex combining load. IEEE Trans Microw Theory Tech, 69(4):2336-2344. ![]() [5]Chung A, Rejeb MB, Darwish A, et al., 2018. Frequency doubler based outphasing system for millimeter wave vector signal generation. Proc 15th European Radar Conf, p.449-452. ![]() [6]Cui J, Li PP, Sheng WX, 2023. High linearity U-band power amplifier design: a novel intermodulation point analysis method. Front Inform Technol Electron Eng, 24(1):176-186. ![]() [7]Dai ZJ, Kong SM, Feng W, et al., 2024. Design of wideband asymmetric Doherty power amplifier using a new phase compensation technique. IEEE Trans Circ Syst I Regular Papers, 71(3):1093-1104. ![]() [8]Doherty WH, 1936. A new high efficiency power amplifier for modulated waves. Proc Inst Radio Eng, 24(9):1163-1182. ![]() [9]Fang XH, Cheng KKM, 2014. Extension of high-efficiency range of Doherty amplifier by using complex combining load. IEEE Trans Microw Theory Tech, 62(9):2038-2047. ![]() [10]Guo J, Crupi G, Cai JL, 2022. A broadband asymmetric Doherty power amplifier design based on multiobjective Bayesian optimization: theoretical and experimental validation. IEEE Access, 10:89823-89834. ![]() [11]Karahan EA, Liu Z, Sengupta K, 2023. Deep-learning-based inverse-designed millimeter-wave passives and power amplifiers. IEEE J Sol-State Circ, 58(11):3074-3088. ![]() [12]Kong W, Xia J, Meng F, et al., 2018. A Doherty power amplifier with large back-off power range using integrated enhancing reactance. Wirel Commun Mob Comput, 2018:3968308. ![]() [13]Kong W, Zhong YJ, Xia J, et al., 2024. Optimization design of broadband Doherty PA using fragment-type matching network based on dual-state impedance objective function. IEEE Trans Circ Syst II Express Briefs, 71(4):1809-1813. ![]() [14]Li C, You F, Peng J, et al., 2020. Co-design of matching sub-networks to realize broadband symmetrical Doherty with configurable back-off region. IEEE Trans Circ Syst II Express Briefs, 67(10):1730-1734. ![]() [15]Li M, Li ZQ, Zheng Q, et al., 2022. A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design. Front Inform Technol Electron Eng, 23(2):346-350. ![]() [16]Li MY, Cheng XB, Dai ZJ, et al., 2023. A novel method for extending the output power back-off range of an asymmetrical Doherty power amplifier. Front Inform Technol Electron Eng, 24(3):470-479. ![]() [17]Liu X, Lv GS, Wang DH, et al., 2020. Energy-efficient power amplifiers and linearization techniques for massive MIMO transmitters: a review. Front Inform Technol Electron Eng, 21(1):72-96. ![]() [18]Lyu H, Lovato R, Gowri SP, et al., 2023. Co-design of Doherty power amplifier and post-matching bandpass filter. IEEE Wireless and Microwave Technology Conf, p.65-68. ![]() [19]Nan JC, Wang H, Cong MF, et al., 2021. A broadband Doherty power amplifier with a new load modulation network. IEEE Access, 9:58025-58033. ![]() [20]Özen M, Andersson K, Fager C, 2016. Symmetrical Doherty power amplifier with extended efficiency range. IEEE Trans Microw Theory Tech, 64(4):1273-1284. ![]() [21]Pang JZ, He SB, Huang CY, et al., 2015. A post-matching Doherty power amplifier employing low-order impedance inverters for broadband applications. IEEE Trans Microw Theory Tech, 63(12):4061-4071. ![]() [22]Ren M, Gao RB, Liu S, et al., 2024. Design of wideband Doherty power amplifier using inverse continuous class-F mode. IEEE Trans Circ Syst II Express Briefs, 71(9):4176-4180. ![]() [23]Roychowdhury D, Kitchen J, 2022. Asymmetrical continuous mode Doherty power amplifier using complex combining load impedance. IEEE Texas Symp on Wireless and Microwave Circuits and Systems, p.1-5. ![]() [24]Ruhul Hasin M, Kitchen J, 2019. Exploiting phase for extended efficiency range in symmetrical Doherty power amplifiers. IEEE Trans Microw Theory Tech, 67(8):3455-3463. ![]() [25]Shi WM, He SB, Gideon N, 2017. Extending high-efficiency power range of symmetrical Doherty power amplifiers by taking advantage of peaking stage. IET Microw Antenn Propag, 11(9):1296-1302. ![]() [26]Shi WM, He SB, Zhu XY, et al., 2018. Broadband continuous-mode Doherty power amplifiers with non-infinity peaking impedance. IEEE Trans Microw Theory Tech, 66(2):1034-1046. ![]() [27]Wang H, Nan JC, Cong MF, et al., 2022. A broadband power amplifier with multifrequency impedance matching. IEEE Microw Wirel Compon Lett, 32(11):1339-1342. ![]() [28]Xia J, Yang MS, Guo Y, et al., 2016. A broadband high-efficiency Doherty power amplifier with integrated compensating reactance. IEEE Trans Microw Theory Tech, 64(7):2014-2024. ![]() [29]Xia J, Bian CX, Kong W, et al., 2022. Optimization design of fragment-type filtering matching network for continuous inverse class-F power amplifier. IEICE Electron Express, 19(14):20220043. ![]() [30]Xiao F, Dai ZJ, Pang JZ, et al., 2021. A Doherty power amplifier with extended back-off by using non-infinite peaking impedance and complex combining load. IEEE MTT-S Int Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications, p.182-184. ![]() [31]Xu Y, Pang JZ, Wang XY, et al., 2021. Enhancing bandwidth and back-off range of Doherty power amplifier with modified load modulation network. IEEE Trans Microw Theory Tech, 69(4):2291-2303. ![]() [32]Yang ZX, Yao Y, Li MY, et al., 2019. Bandwidth extension of Doherty power amplifier using complex combining load with noninfinity peaking impedance. IEEE Trans Microw Theory Tech, 67(2):765-777. ![]() [33]Yao Y, Dai ZJ, Li MY, 2024. A novel topology with controllable wideband baseband impedance for power amplifiers. Front Inform Technol Electron Eng, 25(2):308-315. ![]() [34]Zhang JR, Zheng SY, Yang N, 2023. An efficient broadband symmetrical Doherty power amplifier with extended back-off range. IEEE Trans Circ Syst II Express Briefs, 70(4):1316-1320. ![]() [35]Zhang QF, Li H, 2007. MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput, 11(6):712-731. ![]() [36]Zhou H, Perez-Cisneros JR, Hesami S, et al., 2022. A generic theory for design of efficient three-stage Doherty power amplifiers. IEEE Trans Microw Theory Tech, 70(2):1242-1253. ![]() [37]Zhou LH, Zhou XY, Chan WS, 2023. A compact and broadband Doherty power amplifier without post-matching network. IEEE Trans Circ Syst II Express Briefs, 70(3):919-923. ![]() [38]Zhou XY, Chan WS, Sharma T, et al., 2022. A Doherty power amplifier with extended high-efficiency range using three-port harmonic injection network. IEEE Trans Circ Syst I Regular Papers, 69(7):2756-2766. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>