CLC number: TN722
On-line Access: 2024-12-26
Received: 2024-03-23
Revision Accepted: 2025-01-24
Crosschecked: 2024-05-30
Cited: 0
Clicked: 1362
Citations: Bibtex RefMan EndNote GB/T7714
Cheng BI, Haotian LI, Shuai WANG, Zhijiang DAI, Jingzhou PANG, Ruibin GAO, Kang ZHONG, Jingsong WANG. Broadband and asymmetrical Doherty based on circuit parameter solution space[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400226 @article{title="Broadband and asymmetrical Doherty based on circuit parameter solution space", %0 Journal Article TY - JOUR
基于电路参数解空间的宽带非对称Doherty功率放大器1重庆大学微电子与通信工程学院,中国重庆市,400044 2中国电子科技集团公司第五十四研究所,中国石家庄市,050081 摘要:本文将后匹配网络的输入阻抗设为复数。基于Doherty功率放大器(DPA)的基本原理,确定了参数解空间,使得DPA在回退状态能实现高效率。参数解空间包含3个变量:载波功率放大器输出匹配网络的相位参数、峰值功率放大器输出匹配网络的相位参数以及后匹配网络的输入阻抗。这些参数经过优化,使DPA能在回退状态实现高效率。在频率与参数解空间之间建立了一一映射关系,使得在宽频范围内对DPA进行精确优化成为可能。利用这种映射关系,设计并制作了一款工作在1.8–2.6 GHz频段的非对称DPA,验证了所提方法的可行性和有效性。在连续波激励下,测试结果显示,当功率回退量为9.5 dB时,漏极效率为42.7%–56.4%。功率饱和点的漏极效率和输出功率分别为45.8%–71.1%和46.9–48.8 dBm,饱和增益为5.5–8.0 dB。此外,在1.8、2.1和2.6 GHz频率下,输入激励采用峰均比为8dB,信号带宽为20 MHz的长期演进(LTE)调制信号。DPA经过数字预失真线性化后,邻信道功率比(ACPR)始终低于48 dBc。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Bachi J, Serhan A, Pham DKG, et al., 2022. A novel approach for Doherty PA design using a compact L-C combiner. IEEE Trans Circ Syst II Express Briefs, 69(10):4023-4027. ![]() [2]Cavarroc M, Lamy A, Lembeye O, et al., 2023. Compact 40% fractional bandwidth Doherty PA with input group delay engineering. IEEE Microw Wirel Technol Lett, 33(6):851-854. ![]() [3]Chen WJ, Wu YL, Li SB, et al., 2023. Fully-integrated broadband GaAs MMIC load modulated balanced amplifier for sub-6 GHz applications. IEEE Trans Circ Syst II Express Briefs, 70(8):2834-2838. ![]() [4]Choi W, Kang H, Oh H, et al., 2021. Doherty power amplifier based on asymmetric cells with complex combining load. IEEE Trans Microw Theory Tech, 69(4):2336-2344. ![]() [5]Cui J, Li PP, Sheng WX, 2023. High linearity U-band power amplifier design: a novel intermodulation point analysis method. Front Inform Technol Electron Eng, 24(1):176-186. ![]() [6]Doherty WH, 1936. A new high efficiency power amplifier for modulated waves. Proc Inst Radio Eng, 24(9):1163-1182. ![]() [7]Fang XH, Cheng KKM, 2014. Extension of high-efficiency range of Doherty amplifier by using complex combining load. IEEE Trans Microw Theory Tech, 62(9):2038-2047. ![]() [8]Frickey DA, 1994. Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances. IEEE Trans Microw Theory Tech, 42(2):205-211. ![]() [9]Hallberg W, Özen M, Gustafsson D, et al., 2016. A Doherty power amplifier design method for improved efficiency and linearity. IEEE Trans Microw Theory Tech, 64(12):4491-4504. ![]() [10]Li C, You F, Peng J, et al., 2020. Co-design of matching sub-networks to realize broadband symmetrical Doherty with configurable back-off region. IEEE Trans Circ Syst II Express Briefs, 67(10):1730-1734. ![]() [11]Li M, Pang JZ, Li Y, et al., 2019. Ultra-wideband dual-mode Doherty power amplifier using reciprocal gate bias for 5G applications. IEEE Trans Microw Theory Tech, 67(10):4246-4259. ![]() [12]Li M, Li ZQ, Zheng Q, et al., 2022. A 17–26.5 GHz 42.5 dBm broadband and highly efficient gallium nitride power amplifier design. Front Inform Technol Electron Eng, 23(2):346-350. ![]() [13]Li MY, Cheng XB, Dai ZJ, et al., 2023. A novel method for extending the output power back-off range of an asymmetrical Doherty power amplifier. Front Inform Technol Electron Eng, 24(3):470-479. ![]() [14]Li SS, Huang MY, Jung D, et al., 2021. A mm-wave current-mode inverse outphasing transmitter front-end: a circuit duality of conventional voltage-mode outphasing. IEEE J Sol-State Circ, 56(6):1732-1744. ![]() [15]Pang JZ, He SB, Dai ZJ, et al., 2016. Design of a post-matching asymmetric Doherty power amplifier for broadband applications. IEEE Microw Wirel Compon Lett, 26(1):52-54. ![]() [16]Rouhani S, Ghanaatian A, Abrishamifar A, et al., 2020. A wideband quasi-asymmetric Doherty power amplifier with a two-section matching-phase difference compensator network design using GaAs technology. Analog Integr Circ Signal Process, 105(3):359-370. ![]() [17]Shi WM, He SB, You F, et al., 2017. The influence of the output impedances of peaking power amplifier on broadband Doherty amplifiers. IEEE Trans Microw Theory Tech, 65(8):3002-3013. ![]() [18]Shi WM, He SB, Zhu XY, et al., 2018. Broadband continuous-mode Doherty power amplifiers with noninfinity peaking impedance. IEEE Trans Microw Theory Tech, 66(2):1034-1046. ![]() [19]Son J, Kim I, Moon J, et al., 2011. A highly efficient asymmetric Doherty power amplifier with a new output combining circuit. IEEE Int Conf on Microwaves, Communications, Antennas and Electronic Systems, p.1-4. ![]() [20]Wright P, Lees J, Benedikt J, et al., 2009. A methodology for realizing high efficiency class-J in a linear and broadband PA. IEEE Trans Microw Theory Tech, 57(12):3196-3204. ![]() [21]Xu Y, Pang JZ, Wang XY, et al., 2021. Enhancing bandwidth and back-off range of Doherty power amplifier with modified load modulation network. IEEE Trans Microw Theory Tech, 69(4):2291-2303. ![]() [22]Yang ZX, Yao Y, Li MY, et al., 2019. Bandwidth extension of Doherty power amplifier using complex combining load with noninfinity peaking impedance. IEEE Trans Microw Theory Tech, 67(2):765-777. ![]() [23]Zhang JR, Zheng SY, Yang N, 2023. An efficient broadband symmetrical Doherty power amplifier with extended back-off range. IEEE Trans Circ Syst II Express Briefs, 70(4):1316-1320. ![]() [24]Zhang XH, Li SS, Huang DQ, et al., 2023. A millimeter-wave three-way Doherty power amplifier for 5G NR OFDM. IEEE J Sol-State Circ, 58(5):1256-1270. ![]() [25]Zhou XY, Chan WS, Sharma T, et al., 2022. A Doherty power amplifier with extended high-efficiency range using three-port harmonic injection network. IEEE Trans Circ Syst I Regul Pap, 69(7):2756-2766. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>