CLC number: TN433
On-line Access: 2024-12-26
Received: 2024-05-10
Revision Accepted: 2024-07-30
Crosschecked: 2025-01-24
Cited: 0
Clicked: 1569
Citations: Bibtex RefMan EndNote GB/T7714
Jiang LUO, Yizhao LI, Yao PENG, Qiang CHENG. A V-band high-linearity BiCMOS mixer with robust temperature tolerance[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400378 @article{title="A V-band high-linearity BiCMOS mixer with robust temperature tolerance", %0 Journal Article TY - JOUR
具有优异温度鲁棒性的V波段高线性度BiCMOS混频器1杭州电子科技大学电子信息学院,中国杭州市,310018 2东南大学毫米波国家重点实验室,中国南京市,210096 3北京无线电测量研究所,中国北京市,100854 摘要:本文提出一种高线性度且具有优异温度鲁棒性的V波段下变频混频器。通过在跨导(gm)级和中频(IF)输出缓冲器中分别采用负温度补偿电路(NTC)和正温度补偿电路(PTC),极大增强了混频器的温度耐受性。得益于采用跨导增强的有源巴伦和发射极负反馈技术,混频器的线性度得到了显著改善。为验证效果,基于130纳米SiGe BiCMOS工艺流片制造了一个V波段双平衡下变频混频器。测试结果表明,本地振荡器(LO)在57GHz至63 GHz的频率范围内且注入功率为−3 dBm时,混频器的峰值转换增益(CG)为−0.5 dB,最小噪声系数(NF)为11.5 dB,输入1 dB压缩点(IP1 dB)为4.8 dBm。进一步地,在−55 °C至85 °C的温度范围内,CG、NF和IP1 dB的测量结果具有良好的一致性,它们的波动分别小于0.8 dB、1 dB和1.2 dBm。在57GHz至63 GHz范围内,LO端口至频射(RF)端口测量的隔离度优于46 dB,RF端口测量的回波损耗大于29 dB,LO端口测量的回波损耗超过12 dB。在2.5 V电源电压下,混频器在−55 ℃、25 ℃和85 ℃温度下的功耗分别为15.75 mW、18.5 mW和21 mW。此外,混频器芯片包括所有测试焊盘在内的硅片总面积为0.56 mm2。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Ahmed A, Huang MY, Munzer D, et al., 2021. A 43‒97-GHz mixer-first front-end with quadrature input matching and on-chip image rejection. IEEE J Sol-State Circ, 56(3):705-714. ![]() [2]Chen JD, Qian JB, Huang SY, 2020. A low-noise and high-gain folded mixer for a UWB system in 0.18-μm SiGe BiCMOS technology. IEEE Trans Circ Syst II Express Briefs, 68(2):612-616. ![]() [3]Chi CH, Chuang HR, 2016. A 60-GHz CMOS ultra-low-power single-ended sub-harmonic mixer in 90-nm CMOS. Proc IEEE Int Symp on Radio-Frequency Integration Technology, p.1-3. ![]() [4]Chiou HK, Chou HT, Liang CJ, 2013. A 35-to-83 GHz multiconductor-lines signal combiner for high linear and wideband mixer. IEEE Microw Wirel Compon Lett, 23(10):548-550. ![]() [5]Choi C, Son JH, Lee O, et al., 2017. A +12-dBm OIP3 60-GHz RF downconversion mixer with an output-matching, noise- and distortion-canceling active balun for 5G applications. IEEE Microw Wirel Compon Lett, 27(3):284286. ![]() [6]Chou HT, Liang JR, Chiou HK, 2012. V-band low-power Darlington-pair gate-pumped mixer with thin-film LC-hybrid linear combiner in 90 nm CMOS. Electron Lett, 48(16):1023-1024. ![]() [7]Ciocoveanu R, Rimmelspacher J, Weigel R, et al., 2018. A 1.8-mW low power, PVT-resilient, high linearity, modified Gilbert-cell down-conversion mixer in 28-nm CMOS. Proc IEEE 18th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, p.19-22. ![]() [8]Ciocoveanu R, Weigel R, Issakov V, 2019a. A highly integrated 60 GHz receiver for radar applications in 28 nm bulk CMOS. Proc IEEE Int Conf on Microwaves, Antennas, Communications and Electronic Systems, p.1-5. ![]() [9]Ciocoveanu R, Weigel R, Hagelauer A, et al., 2019b. Modified Gilbert-cell mixer with an LO waveform shaper and switched gate-biasing for 1/f noise reduction in 28-nm CMOS. IEEE Trans Circ Syst II Express Briefs, 66(10):1688-1692. ![]() [10]Cui J, LI PP, Sheng WX, 2023. High linearity U-band power amplifier design: a novel intermodulation point analysis method. Front Inform Technol Electron Eng, 24(1):176-186. ![]() [11]Duan ZM, Wu BW, Wang Y, et al., 2023. A 76‒81 GHz 2×8 MIMO radar transceiver with broadband fast chirp generation and 16-antenna-in-package virtual array. IEEE J Sol-State Circ, 58(11):3103-3112. ![]() [12]Inanlou F, Coen CT, Cressler JD, 2014. A 1.0 V, 10-22 GHz, 4 mW LNA utilizing weakly saturated SiGe HBTs for single-chip, low-power, remote sensing applications. IEEE Microw Wirel Compon Lett, 24(12):890-892. ![]() [13]Kashani MH, Tarkeshdouz A, Afshari E, et al., 2019. A 53‒67 GHz low-noise mixer-first receiver front-end in 65-nm CMOS. IEEE Trans Circ Syst I Reg Pap, 66(6):2051-2063. ![]() [14]Kim SK, Cui CL, Huang GC, et al., 2012. A 77 GHz low LO power mixer with a split self-driven switching cell in 65 nm CMOS technology. IEEE Microw Wirel Comp Lett, 22(9):480-482. ![]() [15]Kolios V, Kalivas G, 2016. A 60 GHz down-conversion mixer with variable gain and bandwidth in 130 nm CMOS technology. Proc 5th Int Conf on Modern Circuits and Systems Technologies, p.1-4. ![]() [16]Krishnamurthy S, Iotti L, Niknejad AM, 2021. Design of high-linearity mixer-first receivers for mm-wave digital MIMO arrays. IEEE J Sol-State Circ, 56(11):3375-3387. ![]() [17]Liu ZQ, Dong JY, Chen ZL, et al., 2018. A 62‒90 GHz high linearity and low noise CMOS mixer using transformer-coupling cascode topology. IEEE Access, 6:19338-19344. ![]() [18]Longhi PE, Pace L, Colangeli S, et al., 2020. V-band GaAs metamorphic low-noise amplifier design technique for sharp gain roll-off at lower frequencies. IEEE Microw Wirel Compon Lett, 30(6):601-604. ![]() [19]Mazor N, Sheinman B, Katz O, et al., 2017. Highly linear 60-GHz SiGe down-conversion/up-conversion mixers. IEEE Microw Wirel Compon Lett, 27(4):401-403. ![]() [20]Razavi B, 2000. Design of Analog CMOS Integrated Circuits. McGraw-Hill, New York, United States. ![]() [21]Sutbas B, Ng HJ, Wessel J, et al., 2022. A V-band low-power and compact down-conversion mixer with low LO power in 130-nm SiGe BiCMOS technology. Proc 16th European Microwave Integrated Circuits Conf, p.96-99. ![]() [22]Vardarli E, Sakalas P, Schröter M, 2022. A 5.9 mW E-/W-band SiGe-HBT LNA with 48 GHz 3-dB bandwidth and 4.5-dB noise figure. IEEE Microw Wirel Compon Lett, 32(12):1451-1454. ![]() [23]Wang RT, Zhu W, Wang Y, 2024. An adaptive analog temperature compensated W-band front-end with ±0.0033 dB/°C gain variation across -30 °C to 120 °C. IEEE Trans Circ Syst II Express Briefs, 71(2):542-546. ![]() [24]Wei HJ, Meng CC, Wang TW, et al., 2012. 60-GHz dual-conversion down-/up-converters using Schottky diode in 0.18 μm foundry CMOS technology. IEEE Trans Microw Theory Tech, 60(6):1684-1698. ![]() [25]Wu CL, Yu CK, Kenneth KO, 2015. Amplification of nonlinearity in multiple gate transistor millimeter wave mixer for improvement of linearity and noise figure. IEEE Microw Wirel Compon Lett, 25(5):310-312. ![]() [26]Yu YM, Kang K, 2020. Analysis and design of transformer-based CMOS ultra-wideband millimeter-wave circuits for wireless applications: a review. Front Inform Technol Electron Eng, 21(1):97-115. ![]() [27]Yu YM, Liu RY, Zuo YJ, et al., 2024. A 60‒90 GHz mixer-first receiver with adaptive temperature-compensation technique. IEEE Microw Wirel Technol Lett, 34(4):443-446. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>