CLC number: TN82
On-line Access: 2025-01-24
Received: 2024-05-10
Revision Accepted: 2024-09-30
Crosschecked: 2025-01-24
Cited: 0
Clicked: 1111
Citations: Bibtex RefMan EndNote GB/T7714
Xiaowei CAO, Changjiang DENG, Youjia YIN, Yinan HAO, Weidong HU, Zhewei FU, Zhiji DENG. Two-bit dual-polarized reconfigurable intelligent surface with low power consumption for 6G near-field communication[J]. Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/FITEE.2400379 @article{title="Two-bit dual-polarized reconfigurable intelligent surface with low power consumption for 6G near-field communication", %0 Journal Article TY - JOUR
用于6G近场通信的低功耗2比特双极化可重构智能超表面1北京理工大学集成电路与电子学院,中国北京市,100081 2中国电子科技集团公司第五十四研究所,中国石家庄市,050081 3北京理工大学唐山研究院,中国唐山市,063099 4浙江大华技术股份有限公司,中国杭州市,310053 5浙江省视觉物联融合技术重点实验室,中国杭州市,310053 摘要:使用大规模天线阵列的近场通信是6G通信中的热门研究课题之一。可重构智能表面(RIS)是一种经济有效的近场电磁调制方法。本文提出一种2比特双极化RIS,具有低成本、低功耗、高精度和极化分集的优点。每一个单元由一个缝隙耦合贴片、两个SP4T开关和两组微带延时线组成。通过一个SP4T开关控制四条延时线的通断,实现了2比特的相位分布。通过放置两个正交缝隙实现了双极化设计。本文采用15×15的原型机在3.6 GHz频段进行了性能验证,可以实现±60°范围的波束扫描,水平极化和垂直极化的最大口径效率分别是40.1%和38.3%。本设计中RIS原型机的总功耗在100 mW左右,在6G近场通信中是很有吸引力的设计方案。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]Alexandropoulos GC, Shlezinger N, Alamzadeh I, et al., 2024. Hybrid reconfigurable intelligent metasurfaces: enabling simultaneous tunable reflections and sensing for 6G wireless communications. IEEE Veh Technol Mag, 19(1):75-84. ![]() [2]Dai LL, Wang BC, Wang M, et al., 2020. Reconfigurable intelligent surface-based wireless communications: antenna design, prototyping, and experimental results. IEEE Access, 8:45913-45923. ![]() [3]Dai ZY, Xu JR, Zeng Y, et al., 2024. Characterizing the rate region of active and passive communications with RIS-based cell-free symbiotic radio. IEEE Int Things J, 11(4):5653-5666. ![]() [4]Dash S, Psomas C, Krikidis I, et al., 2022. Active control of THz waves in wireless environments using graphene-based RIS. IEEE Trans Antenn Propag, 70(10):8785-8797. ![]() [5]Feng PY, Qu SW, Yang SW, 2018. Octave bandwidth transmit arrays with a flat gain. IEEE Trans Antenn Propag, 66(10):5231-5238. ![]() [6]Han JQ, Li L, Liu GY, et al., 2019. A wideband 1 bit 12×12 reconfigurable beam-scanning reflectarray: design, fabrication, and measurement. IEEE Antenn Wirel Propag Lett, 18(6):1268-1272. ![]() [7]Hao YN, Deng CJ, Cao XW, et al., 2024. A high aperture efficiency 1-bit reconfigurable reflectarray antenna with extremely low power consumption. IEEE Trans Antenn Propag, 72(1):1015-1020. ![]() [8]Hum SV, Okoniewski M, Davies RJ, 2007. Modeling and design of electronically tunable reflectarrays. IEEE Trans Antenn Propag, 55(8):2200-2210. ![]() [9]Jiang H, Xiong BP, Zhang HM, et al., 2023. Hybrid far- and near-field modeling for reconfigurable intelligent surface assisted V2V channels: a sub-array partition based approach. IEEE Trans Wirel Commun, 22(11):8290-8303. ![]() [10]Jiang YH, Gao FF, Jian MN, et al., 2023. Reconfigurable intelligent surface for near field communications: beamforming and sensing. IEEE Trans Wirel Commun, 22(5):3447-3459. ![]() [11]Kim H, Oh S, Bang S, et al., 2023. Independently polarization manipulable liquid-crystal-based reflective metasurface for 5G reflectarray and reconfigurable intelligent surface. IEEE Trans Antenn Propag, 71(8):6606-6616. ![]() [12]Lee SG, Nam YH, Kim Y, et al., 2022. A wide-angle and high-efficiency reconfigurable reflectarray antenna based on a miniaturized radiating element. IEEE Access, 10:103223-103229. ![]() [13]Li P, Yu H, Su JX, et al., 2023. A low-RCS multifunctional shared aperture with wideband reconfigurable reflectarray antenna and tunable scattering characteristic. IEEE Trans Antenn Propag, 71(1):621-630. ![]() [14]Li XR, Lu HQ, Zeng Y, et al., 2022. Near-field modeling and performance analysis of modular extremely large-scale array communications. IEEE Commun Lett, 26(7):1529-1533. ![]() [15]Li XY, Wan YL, Liu J, et al., 2021. Broadband electronically scanned reflectarray antenna with liquid crystals. IEEE Antenn Wirel Propag Lett, 20(3):396-400. ![]() [16]Li ZP, Huo P, Wu Y, et al., 2021. Reflectarray compact antenna test range with controlled aperture disturbance fields. IEEE Antenn Wirel Propag Lett, 20(7):1283-1287. ![]() [17]Luyen H, Booske JH, Behdad N, 2020. 2-bit phase quantization using mixed polarization-rotation/non-polarization-rotation reflection modes for beam-steerable reflectarrays. IEEE Trans Antenn Propag, 68(12):7937-7946. ![]() [18]Mao YL, Xu SH, Yang F, et al., 2015. A novel phase synthesis approach for wideband reflectarray design. IEEE Trans Antenn Propag, 63(9):4189-4193. ![]() [19]Mei P, Cai Y, Zhao K, et al., 2022. On the study of reconfigurable intelligent surfaces in the near-field region. IEEE Trans Antenn Propag, 70(10):8718-8728. ![]() [20]Moghadas H, Daneshmand M, Mousavi P, 2015. MEMS-tunable half phase gradient partially reflective surface for beam-shaping. IEEE Trans Antenn Propag, 63(1):369-373. ![]() [21]Pan WB, Huang C, Chen P, et al., 2013. A beam steering horn antenna using active frequency selective surface. IEEE Trans Antenn Propag, 61(12):6218-6223. ![]() [22]Perruisseau-Carrier J, 2010. Dual-polarized and polarization-flexible reflective cells with dynamic phase control. IEEE Trans Antenn Propag, 58(5):1494-1502. ![]() [23]Perruisseau-Carrier J, Skrivervik AK, 2008. Monolithic MEMS-based reflectarray cell digitally reconfigurable over a 360° phase range. IEEE Antenn Wirel Propag Lett, 7:138-141. ![]() [24]Vilenskiy AR, Makurin MN, Lee C, et al., 2020. Reconfigurable transmitarray with near-field coupling to gap waveguide array antenna for efficient 2-D beam steering. IEEE Trans Antenn Propag, 68(12):7854-7865. ![]() [25]Wang EH, Peng GY, Zhong KJ, et al., 2024. A 1296-cell reconfigurable reflect-array antenna with 2-bit phase resolution for Ka-band applications. IEEE Trans Antenn Propag, 72(4):3425-3437. ![]() [26]Wang XH, Shu F, Chen RQ, 2023. Beamforming design for RIS-aided amplify-and-forward relay networks. Front Inform Technol Electron Eng, 24(12):1728-1738. ![]() [27]Wang ZL, Mu XD, Liu YW, 2023. Near-field integrated sensing and communications. IEEE Commun Lett, 27(8):2048-2052. ![]() [28]Wu F, Zhao WG, Xia XY, et al., 2023. A 2 bit circularly polarized reconfigurable reflectarray using p-i-n-diode-tuned crossed-bowtie patch elements. IEEE Trans Antenn Propag, 71(9):7299-7309. ![]() [29]Wymeersch H, He JG, Denis B, et al., 2020. Radio localization and mapping with reconfigurable intelligent surfaces: challenges, opportunities, and research directions. IEEE Veh Technol Mag, 15(4):52-61. ![]() [30]Xiang BJ, Dai X, Luk KM, 2022. A wideband low-cost reconfigurable reflectarray antenna with 1-bit resolution. IEEE Trans Antenn Propag, 70(9):7439-7447. ![]() [31]Xu DN, Han Y, Li X, et al., 2023. Energy efficiency optimization for a RIS-assisted multi-cell communication system based on a practical RIS power consumption model. Front Inform Technol Electron Eng, 24(12):1717-1727. ![]() [32]Xu HJ, Xu SH, Yang F, et al., 2020. Design and experiment of a dual-band 1 bit reconfigurable reflectarray antenna with independent large-angle beam scanning capability. IEEE Antenn Wirel Propag Lett, 19(11):1896-1900. ![]() [33]Xu JQ, Mu XD, Liu YW, 2024. Exploiting STAR-RISs in near-field communications. IEEE Trans Wirel Commun, 23(3):2181-2196. ![]() [34]Yang HH, Yang F, Xu SH, et al., 2017. A study of phase quantization effects for reconfigurable reflectarray antennas. IEEE Antenn Wirel Propag Lett, 16:302-305. ![]() [35]Yin YJ, Deng CJ, Cao XW, et al., 2024. Design of a 2-bit dual-polarized reconfigurable reflectarray with high aperture efficiency. IEEE Trans Antenn Propag, 72(1):542-552. ![]() [36]Zhang QS, Zhang MT, Shi XW, et al., 2022. A low-profile beam-steering reflectarray with integrated leaky-wave feed and 2-bit phase resolution for Ka-band SatCom. IEEE Trans Antenn Propag, 70(3):1884-1894. ![]() [37]Zhang X, Zhang HY, 2023. Hybrid reconfigurable intelligent surfaces-assisted near-field localization. IEEE Commun Lett, 27(1):135-139. ![]() [38]Zhao YJ, 2023. Reconfigurable intelligent surfaces for 6G: applications, challenges, and solutions. Front Inform Technol Electron Eng, 24(12):1669-1688. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2025 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>