Full Text:  <696>

Summary:  <176>

CLC number: 

On-line Access: 2023-07-20

Received: 2022-08-29

Revision Accepted: 2022-12-01

Crosschecked: 2023-07-20

Cited: 0

Clicked: 799

Citations:  Bibtex RefMan EndNote GB/T7714

 ORCID:

Shiyuan YAO

https://orcid.org/0000-0001-6582-0788

Shan TONG

https://orcid.org/0000-0002-6145-0721

-   Go to

Article info.
Open peer comments

Journal of Zhejiang University SCIENCE A

Accepted manuscript available online (unedited version)


Numerical investigation of the effect of geosynthetic clay liner chemical incompatibility on flow and contaminant transport through a defective composite liner


Author(s):  Shiyuan YAO, Yuchao LI, Shan TONG, Guannian CHEN, Yunmin CHEN

Affiliation(s):  MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China; more

Corresponding email(s):  stong@zju.edu.cn

Key Words:  Geosynthetic clay liner (GCL); Chemical incompatibility; Leakage; Contaminant transport; Hydraulic conductivity


Share this article to: More |Next Paper >>>

Shiyuan YAO, Yuchao LI, Shan TONG, Guannian CHEN, Yunmin CHEN. Numerical investigation of the effect of geosynthetic clay liner chemical incompatibility on flow and contaminant transport through a defective composite liner[J]. Journal of Zhejiang University Science A,in press.Frontiers of Information Technology & Electronic Engineering,in press.https://doi.org/10.1631/jzus.A2200416

@article{title="Numerical investigation of the effect of geosynthetic clay liner chemical incompatibility on flow and contaminant transport through a defective composite liner",
author="Shiyuan YAO, Yuchao LI, Shan TONG, Guannian CHEN, Yunmin CHEN",
journal="Journal of Zhejiang University Science A",
year="in press",
publisher="Zhejiang University Press & Springer",
doi="https://doi.org/10.1631/jzus.A2200416"
}

%0 Journal Article
%T Numerical investigation of the effect of geosynthetic clay liner chemical incompatibility on flow and contaminant transport through a defective composite liner
%A Shiyuan YAO
%A Yuchao LI
%A Shan TONG
%A Guannian CHEN
%A Yunmin CHEN
%J Journal of Zhejiang University SCIENCE A
%P 557-568
%@ 1673-565X
%D in press
%I Zhejiang University Press & Springer
doi="https://doi.org/10.1631/jzus.A2200416"

TY - JOUR
T1 - Numerical investigation of the effect of geosynthetic clay liner chemical incompatibility on flow and contaminant transport through a defective composite liner
A1 - Shiyuan YAO
A1 - Yuchao LI
A1 - Shan TONG
A1 - Guannian CHEN
A1 - Yunmin CHEN
J0 - Journal of Zhejiang University Science A
SP - 557
EP - 568
%@ 1673-565X
Y1 - in press
PB - Zhejiang University Press & Springer
ER -
doi="https://doi.org/10.1631/jzus.A2200416"


Abstract: 
A composite liner consisting of a geomembrane (GMB) and a geosynthetic clay liner (GCL) can be compromised by inorganic contaminants because of a defective GMB. When the composite liner with defective GMB is exposed to aggressive leachate conditions, the neglect of the chemical incompatibility of the GCL can potentially result in an underestimation of the leakage rate and flux through the composite liner. This paper proposed a numerical investigation on the effect of chemical incompatibility of GCL on the barrier performance of the composite liner with hole defect. Four cases with leachate solutions having varied cation valencies and ionic strengths were analyzed, in which the hydraulic conductivity of GCL was concentration-dependent. Both the effect of the chemical incompatibility of GCL and the mechanisms were analyzed. The incompatibility of GCL resulted in significant increases in leakage rate and flux through the composite liner by factors of up to 4.9 and 5.0, respectively. The incompatibility-affected area in GCL is located within 0.1 m from the center of the hole in the GMB. The coupled increase in the hydraulic conductivity of GCL and pore water concentration impacts the flux and leakage in a short period of time. With GCL chemical incompatibility considered, advection may dominate the contaminant transport through GCL.

膨润土防水毯化学相容性对通过带缺陷复合衬垫中的渗流及污染物迁移影响的数值研究

作者:姚士元1,李育超1,仝杉1,陈冠年1,2,3,陈云敏1
机构:1浙江大学,建筑工程学院,软弱土与环境土工教育部重点实验室,中国杭州,310058;2宁波大学,土木与环境工程与地理科学学院,中国宁波,315211;3宁波中淳高科股份有限公司,中国宁波,315211
目的:考虑膨润土防水毯(GCL)的化学相容性会影响带缺陷的复合衬垫中的渗流与污染物迁移。本文旨在探讨GCL的化学不相容性对复合衬垫的防污性能(衬垫底部的渗漏量以及污染物通量)产生的影响并分析导致这种影响产生的机理。
创新点:1.采用逻辑斯蒂函数模型拟合GCL渗透系数与无机渗滤液中盐浓度之间的关系;2.在计算模型中引入GCL渗透系数与孔隙水浓度的耦合曲线,模拟了在考虑GCL化学不相容性条件下复合衬垫中的渗流与污染物迁移过程;3.采用计算过程中衬垫内各物理量的实时变化表征了GCL化学不相容性的影响机理。
方法:1.通过数据收集、归纳与拟合得到GCL渗透系数在无机盐溶液中与溶液浓度之间的关系(图1和3,公式(5));2.通过建立数值模型并引入GCL渗透系数与孔隙水浓度的耦合曲线,模拟在考虑GCL化学不相容性条件下复合衬垫中的渗流与污染物迁移过程,计算GCL化学不相容性对复合衬垫防污性能的影响大小(图5);3.通过对污染物迁移过程中衬垫内的浓度、水头、流速以及通量分布的分析,得到GCL化学相容性影响衬垫性能的机理(图6~10)。
结论:1.在评估带缺陷复合衬垫防污性能时,尤其是对于含高浓度无机阳离子渗滤液的填埋场,有必要考虑GCL的化学不相容性;2.GCL的化学不相容性会导致孔洞正下方GCL中流速与通量明显增加,以及润湿区半径减小;3. GCL中化学不相容性的影响区域很小,在所有考虑的工况中均小于0.1m,且化学不相容性导致GCL渗透系数会在极短的时间内迅速增高;4. GCL的化学不相容性显著增加了通过复合衬垫的对流通量与扩散通量的比值。

关键词组:复合衬垫;化学相容性;渗漏;污染物迁移;渗透系数

Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article

Reference

[1]AbdulsalamA, IdrisA, MohamedTA, et al., 2017. An integrated technique using solar and evaporation ponds for effective brine disposal management. International Journal of Sustainable Energy, 36(9):914-925.

[2]BaroneFS, YanfulEK, QuigleyRM, et al., 1989. Effect of multiple contaminant migration on diffusion and adsorption of some domestic waste contaminants in a natural clayey soil. Canadian Geotechnical Journal, 26(2):189-198.

[3]BarrosoM, Touze-FoltzN, von MaubeugeK, et al., 2006. Laboratory investigation of flow rate through composite liners consisting of a geomembrane, a GCL and a soil liner. Geotextiles and Geomembranes, 24(3):139-155.

[4]BouazzaA, SinghRM, RoweRK, et al., 2014. Heat and moisture migration in a geomembrane‍–‍GCL composite liner subjected to high temperatures and low vertical stresses. Geotextiles and Geomembranes, 42(5):555-563.

[5]BrownKW, ThomasJC, LyttonRL, et al., 1987. Quantification of Leak Rates Through Holes in Landfill Liners. EPA/600/S2-87/062, U.S. Environmental Protection Agency, Hazardous Waste Engineering Research Laboratory, Cincinnati, USA.

[6]ChaiJC, ProngmaneeN, 2020. Barrier properties of a geosynthetic clay liner using polymerized sodium bentonite. Geotextiles and Geomembranes, 48(3):392-399.

[7]ChenGN, LiYC, ZuoXR, et al., 2020. Comparison of adsorption behaviors of kaolin from column and batch tests: concept of dual porosity. Journal of Environmental Engineering, 146(9):04020102.

[8]ChenGN, YaoSY, WangY, et al., 2022. Measurement of contaminant adsorption on soils using cycling modified column tests. Chemosphere, 294:133822.

[9]El-SebaiiAA, RamadanMRI, Aboul-EneinS, et al., 2011. History of the solar ponds: a review study. Renewable and Sustainable Energy Reviews, 15(6):3319-3325.

[10]El-ZeinA, McCarrollI, MasoudianMS, 2016. Inorganic transport through composite geosynthetics and compacted clay liners under geomembranes with multiple defects. Australian Geomechanics Journal, 51(1):23-39.

[11]FooseGJ, BensonCH, EdilTB, 2001. Analytical equations for predicting concentration and mass flux from composite liners. Geosynthetics International, 8(6):551-575.

[12]FooseGJ, BensonCH, EdilTB, 2002. Comparison of solute transport in three composite liners. Journal of Geotechnical and Geoenvironmental Engineering, 128(5):391-403.

[13]GiroudJP, 1997. Equations for calculating the rate of liquid migration through composite liners due to geomembrane defects. Geosynthetics International, 4(3-4):335-348.

[14]GiroudJP, BonaparteR, 1989. Leakage through liners constructed with geomembranes—part II. Composite liners. Geotextiles and Geomembranes, 8(2):71-111.

[15]GiroudJP, BonaparteR, 2001. Geosynthetics in liquid-containing structures. In: Rowe RK (Ed.), Geotechnical and Geoenvironmental Engineering Handbook. Springer, Boston, USA, p.789-824.

[16]JavandelI, DoughtyC, TsangCF, 1984. Groundwater Transport: Handbook of Mathematical Models. American Geophysical Union, Washington, USA, p.228.

[17]JoHY, KatsumiT, BensonCH, et al., 2001. Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions. Journal of Geotechnical and Geoenvironmental Engineering, 127(7):‍557-567.

[18]JoHY, BensonCH, EdilTB, 2004. Hydraulic conductivity and cation exchange in non-prehydrated and prehydrated bentonite permeated with weak inorganic salt solutions. Clays and Clay Minerals, 52(6):661-679.

[19]JoHY, BensonCH, ShackelfordCD, et al., 2005. Long-term hydraulic conductivity of a geosynthetic clay liner permeated with inorganic salt solutions. Journal of Geotechnical and Geoenvironmental Engineering, 131(4):405-417.

[20]KatsumiT, IshimoriH, OgawaA, et al., 2007. Hydraulic conductivity of nonprehydrated geosynthetic clay liners permeated with inorganic solutions and waste leachates. Soils and Foundations, 47(1):79-96.

[21]KhodarySM, ElwakilAZ, FujiiM, et al., 2020. Effect of hazardous industrial solid waste landfill leachate on the geotechnical properties of clay. Arabian Journal of Geosciences, 13(15):706.

[22]KjeldsenP, BarlazMA, RookerAP, et al., 2002. Present and long-term composition of MSW landfill leachate: a review. Critical Reviews in Environmental Science and Technology, 32(4):297-336.

[23]KolstadDC, BensonCH, EdilTB, 2004. Hydraulic conductivity and swell of nonprehydrated geosynthetic clay liners permeated with multispecies inorganic solutions. Journal of Geotechnical and Geoenvironmental Engineering, 130(12):1236-1249.

[24]LakeCB, RoweRK, 2000. Diffusion of sodium and chloride through geosynthetic clay liners. Geotextiles and Geomembranes, 18(2-4):103-131.

[25]LeeJM, ShackelfordCD, 2005. Impact of bentonite quality on hydraulic conductivity of geosynthetic clay liners. Journal of Geotechnical and Geoenvironmental Engineering, 131(1):64-77.

[26]LeeJM, ShackelfordCD, BensonCH, et al., 2005. Correlating index properties and hydraulic conductivity of geosynthetic clay liners. Journal of Geotechnical and Geoenvironmental Engineering, 131(11):1319-1329.

[27]PetrovRJ, RoweRK, 1997. Geosynthetic clay liner (GCL)‍- chemical compatibility by hydraulic conductivity testing and factors impacting its performance. Canadian Geotechnical Journal, 34(6):863-885.

[28]PetrovRJ, RoweRK, QuigleyRM, 1997. Selected factors influencing GCL hydraulic conductivity. Journal of Geotechnical and Geoenvironmental Engineering, 123(8):683-695.

[29]RoweRK, 1998. Geosynthetics and the minimization of contaminant migration through barrier systems beneath solid waste. Proceedings of the 6th International Conference on Geosynthetics, p.27-103.

[30]RoweRK, 2012. Short- and long-term leakage through composite liners. The 7th Arthur Casagrande Lecture. Canadian Geotechnical Journal, 49(2):141-169.

[31]RoweRK, BrachmanRWI, 2004. Assessment of equivalence of composite liners. Geosynthetics International, 11(4):273-286.

[32]RoweRK, AbdelattyK, 2012. Modeling contaminant transport through composite liner with a hole in the geomembrane. Canadian Geotechnical Journal, 49(7):773-781.

[33]RoweRK, AbdelRazekAY, 2019. Effect of interface transmissivity and hydraulic conductivity on contaminant migration through composite liners with wrinkles or failed seams. Canadian Geotechnical Journal, 56(11):1650-1667.

[34]RoweRK, QuigleyRM, BrachmanRWI, et al., 2004. Barrier Systems for Waste Disposal Facilities, Edition. CRC Press, London, UK, p.45-99.

[35]RuhlJL, DanielDE, 1997. Geosynthetic clay liners permeated with chemical solutions and leachates. Journal of Geotechnical and Geoenvironmental Engineering, 123(4):369-381.

[36]SaidiF, Touze-FoltzN, GobletP, 2006. 2D and 3D numerical modelling of flow through composite liners involving partially saturated GCLs. Geosynthetics International, 13(6):265-276.

[37]SetzMC, TianK, BensonCH, et al., 2017. Effect of ammonium on the hydraulic conductivity of geosynthetic clay liners. Geotextiles and Geomembranes, 45(6):665-673.

[38]ShackelfordCD, RedmondPL, 1995. Solute breakthrough curves for processed kaolin at low flow rates. Journal of Geotechnical and Geoenvironmental Engineering, 121(1):17-32.

[39]ShackelfordCD, LeeJM, 2003. The destructive role of diffusion on clay membrane behavior. Clays and Clay Minerals, 51(2):186-196.

[40]ShackelfordCD, BensonCH, KatsumiT, et al., 2000. Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotextiles and Geomembranes, 18(2-4):133-161.

[41]ThomasRW, KoernerRM, 1996. Advances in HDPE barrier walls. Geotextiles and Geomembranes, 14(7-8):393-408.

[42]VaskoSM, JoHY, BensonCH, et al., 2001. Hydraulic conductivity of partially prehydrated geosynthetic clay liners permeated with aqueous calcium chloride solutions. Proceedings of the Geosynthetics Conference 2001, p.685-699.

Open peer comments: Debate/Discuss/Question/Opinion

<1>

Please provide your name, email address and a comment





Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou 310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn
Copyright © 2000 - 2024 Journal of Zhejiang University-SCIENCE