CLC number:
On-line Access: 2023-04-25
Received: 2022-11-23
Revision Accepted: 2023-02-16
Crosschecked: 2023-04-25
Cited: 0
Clicked: 241
Shuiguang TONG, Zilong FU, Zheming TONG, Junjie LI, Feiyun CONG. Fault diagnosis for gearboxes based on Fourier decomposition method and resonance demodulation[J]. Journal of Zhejiang University Science A, 2023, 24(2): 404-418. @article{title="Fault diagnosis for gearboxes based on Fourier decomposition method and resonance demodulation", %0 Journal Article TY - JOUR
基于傅里叶分解和共振解调的齿轮箱故障诊断机构:1浙江大学,流体动力与机电系统国家重点实验室,中国杭州,310027;2浙江大学,机械工程学院,中国杭州,310027 目的:齿轮箱的振动信号频谱结构比较复杂,难以提取其故障特征频率。傅里叶分解方法可以将振动信号分解为多个单分量信号,利用共振频率筛选出最优分量并进行包络解调,识别特征频率以实现故障诊断。 创新点:1.为了求解共振频率,提出一种基于短时向量的最大奇异值比方法;2.将傅里叶分解方法引入到齿轮箱故障诊断中,并利用共振频率选择最优分量进行包络解调以提取故障特征频率。 方法:1.分析奇异值比与冲击信号的关系,提出求解共振频率的最大奇异值比方法;2.对比最大奇异值比方法与谱峭度方法在求解共振频率方面的表现,从而验证最大奇异值比方法的有效性;3.对比分析所提方法与传统的总体经验模态分解(EEMD)和变分模态分解(VMD)方法在信号分解与故障特征提取方面的效果,并通过仿真和实验进行验证。 结论:1.最大奇异值比方法能够准确计算出共振频率,比谱峭度方法求解的频率值更加精确;2.基于傅里叶分解方法和最大奇异值比的共振解调方法能够有效提取故障特征频率,其在故障诊断方面的表现优于EEMD和VMD方法。 关键词组: Darkslateblue:Affiliate; Royal Blue:Author; Turquoise:Article
Reference[1]AntoniJ, 2006. The spectral kurtosis: a useful tool for characterising non-stationary signals. Mechanical Systems and Signal Processing, 20(2):282-307. ![]() [2]AntoniJ, 2007. Fast computation of the kurtogram for the detection of transient faults. Mechanical Systems and Signal Processing, 21(1):108-124. ![]() [3]AntoniJ, RandallRB, 2006. The spectral kurtosis: application to the vibratory surveillance and diagnostics of rotating machines. Mechanical Systems and Signal Processing, 20(2):308-331. ![]() [4]CongFY, ChenJ, DongGM, et al., 2013. Short-time matrix series based singular value decomposition for rolling bearing fault diagnosis. Mechanical Systems and Signal Processing, 34(1-2):218-230. ![]() [5]DengMQ, DengAD, ZhuJ, et al., 2019. Adaptive bandwidth Fourier decomposition method for multi-component signal processing. IEEE Access, 7:109776-109791. ![]() [6]DengMQ, DengAD, ZhuJ, et al., 2020. Bandwidth Fourier decomposition and its application in incipient fault identification of rolling bearings. Measurement Science and Technology, 31(1):015012. ![]() [7]DragomiretskiyK, ZossoD, 2014. Variational mode decomposition. IEEE Transactions on Signal Processing, 62(3):531-544. ![]() [8]FengZP, ZhangD, ZuoMJ, 2017. Adaptive mode decomposition methods and their applications in signal analysis for machinery fault diagnosis: a review with examples. IEEE Access, 5:24301-24331. ![]() [9]HuangNE, ShenZ, LongSR, et al., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(1971):903-995. ![]() [10]LeiYG, LinJ, HeZJ, et al., 2013. A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mechanical Systems and Signal Processing, 35(1-2):108-126. ![]() [11]LeiYG, LinJ, ZuoMJ, et al., 2014. Condition monitoring and fault diagnosis of planetary gearboxes: a review. Measurement, 48:292-305. ![]() [12]LiH, LiZ, MoW, 2017. A time varying filter approach for empirical mode decomposition. Signal Processing, 138:146-158. ![]() [13]LiZ, LiWG, ZhaoXZ, 2019. Feature frequency extraction based on singular value decomposition and its application on rotor faults diagnosis. Journal of Vibration and Control, 25(6):1246-1262. ![]() [14]LiuYY, YangGL, LiM, et al., 2016. Variational mode decomposition denoising combined the detrended fluctuation analysis. Signal Processing, 125:349-364. ![]() [15]ManZH, WangWY, KhooS, et al., 2012. Optimal sinusoidal modelling of gear mesh vibration signals for gear diagnosis and prognosis. Mechanical Systems and Signal Processing, 33:256-274. ![]() [16]MoshrefzadehA, FasanaA, 2018. The autogram: an effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis. Mechanical Systems and Signal Processing, 105:294-318. ![]() [17]RatoRT, OrtigueiraMD, BatistaAG, 2008. On the HHT, its problems, and some solutions. Mechanical Systems and Signal Processing, 22(6):1374-1394. ![]() [18]ShiJC, RenY, TangHS, et al., 2022. Hydraulic directional valve fault diagnosis using a weighted adaptive fusion of multi-dimensional features of a multi-sensor. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering), 23(4):257-271. ![]() [19]SinghP, 2018. Novel Fourier quadrature transforms and analy ![]() [20]tic signal representations for nonlinear and non-stationary time-series analysis. Royal Society Open Science, 5(11):181131. ![]() [21]SinghP, JoshiSD, PatneyRK, et al., 2017. The Fourier decomposition method for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2199):20160871. ![]() [22]SinghalA, SinghP, FatimahB, et al., 2020. An efficient removal of power-line interference and baseline wander from ECG signals by employing Fourier decomposition technique. Biomedical Signal Processing and Control, 57:101741. ![]() [23]TongSG, HuangYY, JiangYQ, et al., 2019. The identification of gearbox vibration using the meshing impacts based demodulation technique. Journal of Sound and Vibration, 461:114879. ![]() [24]TongSG, HuangYY, TongZM, et al., 2020. A novel short-frequency slip fault energy distribution-based demodulation technique for gear diagnosis and prognosis. International Journal of Advanced Robotic Systems, 17(2). ![]() [25]TorresME, ColominasMA, SchlotthauerG, et al., 2011. A complete ensemble empirical mode decomposition with adaptive noise. IEEE International Conference on Acoustics, Speech and Signal Processing, p.4144-4147. ![]() [26]WangD, 2018. Some further thoughts about spectral kurtosis, spectral L2/L1 norm, spectral smoothness index and spectral Gini index for characterizing repetitive transients. Mechanical Systems and Signal Processing, 108:360-368. ![]() [27]WangJ, DuGF, ZhuZK, et al., 2020. Fault diagnosis of rotating machines based on the EMD manifold. Mechanical Systems and Signal Processing, 135:106443. ![]() [28]WangTY, ChuFL, HanQK, et al., 2017. Compound faults detection in gearbox via meshing resonance and spectral kurtosis methods. Journal of Sound and Vibration, 392:367-381. ![]() [29]WangTY, HanQK, ChuFL, et al., 2019. Vibration based condition monitoring and fault diagnosis of wind turbine planetary gearbox: a review. Mechanical Systems and Signal Processing, 126:662-685. ![]() [30]WangWY, 2001. Early detection of gear tooth cracking using the resonance demodulation technique. Mechanical Systems and Signal Processing, 15(5):887-903. ![]() [31]WuZH, HuangNE, 2009. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 1(1):1-41. ![]() [32]YangXK, ZuoMJ, TianZG, 2022. Development of crack induced impulse-based condition indicators for early tooth crack severity assessment. Mechanical Systems and Signal Processing, 165:108327. ![]() [33]YangXK, WeiDD, ZuoMJ, et al., 2023. Analysis of vibration signals and detection for multiple tooth cracks in spur gearboxes. Mechanical Systems and Signal Processing, 185:109780. ![]() [34]YehJR, ShiehJS, HuangNE, 2010. Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Advances in Adaptive Data Analysis, 2(2):135-156. ![]() [35]YiCC, LvY, DangZ, 2016. A fault diagnosis scheme for rolling bearing based on particle swarm optimization in variational mode decomposition. Shock and Vibration, 2016:9372691. ![]() [36]ZhangD, LiuYY, FengZP, 2020. Demodulation analysis based on Fourier decomposition method and its application for gearbox fault diagnosis. International Conference on Sensing, Diagnostics, Prognostics, and Control, p.329-334. ![]() [37]ZhangX, MiaoQ, ZhangH, et al., 2018. A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery. Mechanical Systems and Signal Processing, 108:58-72. ![]() [38]ZhaoM, JiaXD, 2017. A novel strategy for signal denoising using reweighted SVD and its applications to weak fault feature enhancement of rotating machinery. Mechanical Systems and Signal Processing, 94:129-147. ![]() [39]ZhaoXZ, YeBY, 2009. Similarity of signal processing effect between hankel matrix-based SVD and wavelet transform and its mechanism analysis. Mechanical Systems and Signal Processing, 23(4):1062-1075. ![]() [40]ZhaoXZ, YeBY, 2011. Selection of effective singular values using difference spectrum and its application to fault diagnosis of headstock. Mechanical Systems and Signal Processing, 25(5):1617-1631. ![]() [41]ZhouW, FengZR, XuYF, et al., 2022. Empirical Fourier decomposition: an accurate signal decomposition method for nonlinear and non-stationary time series analysis. Mechanical Systems and Signal Processing, 163:108155. ![]() Journal of Zhejiang University-SCIENCE, 38 Zheda Road, Hangzhou
310027, China
Tel: +86-571-87952783; E-mail: cjzhang@zju.edu.cn Copyright © 2000 - 2023 Journal of Zhejiang University-SCIENCE |
Open peer comments: Debate/Discuss/Question/Opinion
<1>